1. Recycling Materials for Sustainable DNA Origami Manufacturing.
- Author
-
Neuhoff MJ, Wang Y, Vantangoli NJ, Poirier MG, Castro CE, and Pfeifer WG
- Subjects
- Nucleic Acid Conformation, Recycling, DNA chemistry, Nanostructures chemistry, Nanostructures ultrastructure, Nanotechnology methods
- Abstract
DNA origami nanotechnology has great potential in multiple fields including biomedical, biophysical, and nanofabrication applications. However, current production pipelines lead to single-use devices incorporating a small fraction of initial reactants, resulting in a wasteful manufacturing process. Here, we introduce two complementary approaches to overcome these limitations by recycling the strand components of DNA origami nanostructures (DONs). We demonstrate reprogramming entire DONs into new devices, reusing scaffold strands. We validate this approach by reprogramming DONs with complex geometries into each other, using their distinct geometries to verify successful scaffold recycling. We reprogram one DON into a dynamic structure and show both pristine and recycled structures display similar properties. Second, we demonstrate the recovery of excess staple strands postassembly and fold DONs with these recycled strands, showing these structures exhibit the expected geometry and dynamic properties. Finally, we demonstrate the combination of both approaches, successfully fabricating DONs solely from recycled DNA components.
- Published
- 2024
- Full Text
- View/download PDF