1. Negative supercoil at gene boundaries modulates gene topology.
- Author
-
Achar YJ, Adhil M, Choudhary R, Gilbert N, and Foiani M
- Subjects
- Chromatin Assembly and Disassembly, DNA Replication, DNA Topoisomerases, Type I metabolism, DNA Topoisomerases, Type II genetics, DNA Topoisomerases, Type II metabolism, DNA, Cruciform chemistry, DNA, Cruciform genetics, DNA, Cruciform metabolism, DNA, Fungal genetics, DNA, Fungal metabolism, DNA, Superhelical genetics, DNA, Superhelical metabolism, G1 Phase, Gene Expression Regulation, Fungal, High Mobility Group Proteins metabolism, Mutation, Nucleic Acid Hybridization, Nucleosomes chemistry, Nucleosomes genetics, Nucleosomes metabolism, Open Reading Frames genetics, RNA Polymerase II genetics, RNA Polymerase II metabolism, RNA, Fungal chemistry, RNA, Fungal genetics, RNA, Fungal metabolism, S Phase, Saccharomyces cerevisiae enzymology, Saccharomyces cerevisiae Proteins metabolism, Transcription, Genetic, DNA, Fungal chemistry, DNA, Superhelical chemistry, Genes, Fungal, Saccharomyces cerevisiae cytology, Saccharomyces cerevisiae genetics
- Abstract
Transcription challenges the integrity of replicating chromosomes by generating topological stress and conflicts with forks
1,2 . The DNA topoisomerases Top1 and Top2 and the HMGB family protein Hmo1 assist DNA replication and transcription3-6 . Here we describe the topological architecture of genes in Saccharomyces cerevisiae during the G1 and S phases of the cell cycle. We found under-wound DNA at gene boundaries and over-wound DNA within coding regions. This arrangement does not depend on Pol II or S phase. Top2 and Hmo1 preserve negative supercoil at gene boundaries, while Top1 acts at coding regions. Transcription generates RNA-DNA hybrids within coding regions, independently of fork orientation. During S phase, Hmo1 protects under-wound DNA from Top2, while Top2 confines Pol II and Top1 at coding units, counteracting transcription leakage and aberrant hybrids at gene boundaries. Negative supercoil at gene boundaries prevents supercoil diffusion and nucleosome repositioning at coding regions. DNA looping occurs at Top2 clusters. We propose that Hmo1 locks gene boundaries in a cruciform conformation and, with Top2, modulates the architecture of genes that retain the memory of the topological arrangements even when transcription is repressed.- Published
- 2020
- Full Text
- View/download PDF