1. CO 2 Compression and Liquefaction Processes Using a Distillation Column for the Flexible Operation of Transportation.
- Author
-
Kim, Semie, Jung, Pyeong-Gon, Lim, Young-Il, Kim, Hyojoon, and Moon, Hung-Man
- Subjects
DISTILLATION ,CARBON dioxide ,TWO-phase flow ,LIQUEFIED gases ,PRESSURE gages ,PIPELINE transportation - Abstract
Impurities in the CO
2 stream should be removed to prevent eventual phase changes in CO2 transportation because a two-phase flow caused by the phase change in the pipeline necessitates additional overpressure and can induce equipment damage. In this study, CO2 compression and liquefaction (CCL) processes with a distillation column were used to remove non-condensable impurities and were compared with those with a flash. Three different feeds with a flow rate of 50.1 t/h (400,500 t/y) were supplied to the CCL processes and compressed to 65 bar to gauge pressure (barg) and 20 °C. Although the CO2 mixtures obtained through dehydration and flashing met the purity requirements for transportation and storage recommended in literature, the flash-separated CO2 product at 65 barg demonstrated the coexistence of gas and liquid phases, which restricted the temperature window for liquid CO2 transportation. When the distillation column was used instead of the flash, the operating temperature window at 65 barg widened by 3–6 °C owing to the high purity of CO2 . However, the levelized cost of CO2 liquefaction (LCCL) increased by 2–4 $/t-CO2 varying with the feed purity because the distillation column consumed more cooling and heating duties than the flash. This study highlighted that a two-phase flow existed under certain operating conditions despite a high purity of CO2 (over 97 mol%), and the distillation column enhanced the operability of liquid CO2 transportation. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF