1. Combination therapy with budesonide and N-acetylcysteine ameliorates LPS-induced ALI by attenuating neutrophil recruitment through the miR-196b-5p/Socs3 molecular axis
- Author
-
Yang Li, Huimin Yu, Meifen Lv, Qiaofen Li, Kaiwen Zou, and Shaokun Lv
- Subjects
Acute lung injury ,Budesonide ,N-acetylcysteine ,Neutrophil recruitment ,Diseases of the respiratory system ,RC705-779 - Abstract
Abstract Background Neutrophil infiltration accelerates the inflammatory response and is highly correlated to the development of acute lung injury (ALI). Budesonide (BUD) and N-acetylcysteine (NAC) both inhibit the inflammatory response to alleviate ALI, so we further investigated whether their combination is better for ALI. Methods In this study, we investigated the effect and mechanism of Combined BUD and NAC therapy on LPS-induced ALI. Rat ALI model and neutrophil abnormal activation model were established by lipopolysaccharide (LPS). BUD and NAC were treated alone or in combination, or cells were transfected with miR-196b-5p mimic or si-Socs3 to evaluate the efficacy and mechanism of BUD and NAC alone or in combination. Histopathological observation of lungs was performed by Hematoxylin Eosin (HE) staining. The quantity of neutrophils and inflammatory factors level in bronchoalveolar lavage fluid (BALF) were determined by Richter-Gimza complex stain and Enzyme-Linked Immunosorbnent Assay (ELISA), respectively. ReverseTranscription-PolymeraseChainReaction (RT–qPCR) was utilized to assess miR-196b-5p and inflammatory factor mRNA levels. The expression level of Socs3 was detected by immunohistochemistry or Western Blot. Results BUD and NAC combined treatment had a better effect on neutrophil recruitment and inflammatory response in LPS-induced ALI than did BUD and NAC alone. Transfection of the miR-196b-5p mimic reversed the effect of combined BUD and NAC. In conclusion, the combination of BUD and NAC is a better treatment for ALI. Conclusions Combination therapy with BUD and NAC ameliorates LPS-induced ALI by attenuating neutrophil recruitment through the miR-196b-5p/Socs3 molecular axis.
- Published
- 2022
- Full Text
- View/download PDF