5 results on '"Labey L"'
Search Results
2. Differences in the stress distribution in the distal femur between patellofemoral joint replacement and total knee replacement: a finite element study
- Author
-
van Jonbergen Hans-Peter W, Innocenti Bernardo, Gervasi Gian, Labey Luc, and Verdonschot Nico
- Subjects
Patellofemoral joint replacement ,Knee prosthesis ,Finite element analysis ,Stress shielding ,Squat movement ,Orthopedic surgery ,RD701-811 ,Diseases of the musculoskeletal system ,RC925-935 - Abstract
Abstract Background Patellofemoral joint replacement is a successful treatment option for isolated patellofemoral osteoarthritis. However, results of later conversion to total knee replacement may be compromised by periprosthetic bone loss. Previous clinical studies have demonstrated a decrease in distal femoral bone mineral density after patellofemoral joint replacement. It is unclear whether this is due to periprosthetic stress shielding. The main objective of the current study was to evaluate the stress shielding effect of prosthetic replacement with 2 different patellofemoral prosthetic designs and with a total knee prosthesis. Methods We developed a finite element model of an intact patellofemoral joint, and finite element models of patellofemoral joint replacement with a Journey PFJ prosthesis, a Richards II prosthesis, and a Genesis II total knee prosthesis. For each of these 4 finite element models, the average Von Mises stress in 2 clinically relevant regions of interest were evaluated during a simulated squatting movement until 120 degrees of flexion. Results During deep knee flexion, in the anterior region of interest, the average Von Mises stress with the Journey PFJ design was comparable to the physiological knee, while reduced by almost 25% for both the Richards II design and the Genesis II total knee joint replacement design. The average Von Mises stress in the supracondylar region of interest was similar for both patellofemoral prosthetic designs and the physiological model, with slightly lower stress for the Genesis II design. Conclusions Patellofemoral joint replacement results in periprosthetic stress-shielding, although to a smaller degree than in total knee replacement. Specific patellofemoral prosthetic design properties may result in differences in femoral stress shielding.
- Published
- 2012
- Full Text
- View/download PDF
3. Distal femoral bone mineral density decreases following patellofemoral arthroplasty: 1-year follow-up study of 14 patients
- Author
-
Innocenti Bernardo, Labey Luc, Koster Kenneth, van Jonbergen Hans-Peter W, and van Kampen Albert
- Subjects
Diseases of the musculoskeletal system ,RC925-935 - Abstract
Abstract Background The bone mineral density (BMD) of the distal femur decreases by 16-36% within one year after total knee arthroplasty (TKA) because of the femoral component's stress-shielding effect. The aim of this prospective study was to determine the quantitative change from the baseline BMD in the distal femur 1 year after patellofemoral arthroplasty using dual-energy X-ray absorptiometry (DXA). Methods Between December 2007 and December 2008, 14 patients had patellofemoral arthroplasty for isolated patellofemoral osteoarthritis. Distal femoral BMD was assessed using DXA in 2 regions of interest (ROI) on the lateral view 2 weeks before and 12 months after patellofemoral arthroplasty. The contra-lateral knee was used as a control, with BMD measurements performed in identical ROIs. Results The mean change from baseline BMD in the operated knees after 1 year was -0.169 g/cm2 (95% CI: -0.293 to -0.046 g/cm2) behind the anterior flange (-15%), and -0.076 g/cm2 (95% CI: -0.177 to 0.024 g/cm2) in the supracondylar area 1 cm above the prosthesis (-8%) (p = 0.01 and p = 0.13, respectively). The mean change from baseline BMD in the non-operated knees after 1 year was 0.016 g/cm2 (95% CI: -0.152 to 0.185 g/cm2) behind the anterior flange (2%), and 0.023 g/cm2 (95% CI: -0.135 to 0.180 g/cm2) in the supracondylar area 1 cm above the prosthesis (2%) (p = 0.83, and p = 0.76, respectively). Conclusions Our findings suggest that patellofemoral arthroplasty results in a statistically significant decrease in BMD behind the anterior flange.
- Published
- 2010
- Full Text
- View/download PDF
4. Can medio-lateral baseplate position and load sharing induce asymptomatic local bone resorption of the proximal tibia? A finite element study
- Author
-
Wong Pius, Labey Luc, Truyens Evelyn, Innocenti Bernardo, Victor Jan, and Bellemans Johan
- Subjects
Orthopedic surgery ,RD701-811 ,Diseases of the musculoskeletal system ,RC925-935 - Abstract
Abstract Background Asymptomatic local bone resorption of the tibia under the baseplate can occasionally be observed after total knee arthroplasty (TKA). Its occurrence is not well documented, and so far no explanation is available. We report the incidence of this finding in our practice, and investigate whether it can be attributed to specific mechanical factors. Methods The postoperative radiographs of 500 consecutive TKA patients were analyzed to determine the occurrence of local medial bone resorption under the baseplate. Based on these cases, a 3D FE model was developed. Cemented and cementless technique, seven positions of the baseplate and eleven load sharing conditions were considered. The average VonMises stress was evaluated in the bone-baseplate interface, and the medial and lateral periprosthetic region. Results Sixteen cases with local bone resorption were identified. In each, bone loss became apparent at 3 months post-op and did not increase after one year. None of these cases were symptomatic and infection screening was negative for all. The FE analysis demonstrated an influence of baseplate positioning, and also of load sharing, on stresses. The average stress in the medial periprosthetic region showed a non linear decrease when the prosthetic baseplate was shifted laterally. Shifting the component medially increased the stress on the medial periprosthetic region, but did not significantly unload the lateral side. The presence of a cement layer decreases the stresses. Conclusion Local bone resorption of the proximal tibia can occur after TKA and might be attributed to a stress shielding effect. This FE study shows that the medial periprosthetic region of the tibia is more sensitive than the lateral region to mediolateral positioning of the baseplate. Medial cortical support of the tibial baseplate is important for normal stress transfer to the underlying bone. The absence of medial cortical support of the tibial baseplate may lead to local bone resorption at the proximal tibia, as a result of the stress shielding effect. The presence of a complete layer of cement can reduce stress shielding, though. Despite the fact that the local bone resorption is asymptomatic and non-progressive, surgeons should be aware of this phenomenon in their interpretation of follow-up radiographs.
- Published
- 2009
- Full Text
- View/download PDF
5. Assessment of the primary rotational stability of uncemented hip stems using an analytical model: Comparison with finite element analyses
- Author
-
Van der Perre Georges, Mulier Michiel, Labey Luc, Sauwen Nicolas, Zeman Maria E, and Jaecques Siegfried VN
- Subjects
Orthopedic surgery ,RD701-811 ,Diseases of the musculoskeletal system ,RC925-935 - Abstract
Abstract Background Sufficient primary stability is a prerequisite for the clinical success of cementless implants. Therefore, it is important to have an estimation of the primary stability that can be achieved with new stem designs in a pre-clinical trial. Fast assessment of the primary stability is also useful in the preoperative planning of total hip replacements, and to an even larger extent in intraoperatively custom-made prosthesis systems, which result in a wide variety of stem geometries. Methods An analytical model is proposed to numerically predict the relative primary stability of cementless hip stems. This analytical approach is based upon the principle of virtual work and a straightforward mechanical model. For five custom-made implant designs, the resistance against axial rotation was assessed through the analytical model as well as through finite element modelling (FEM). Results The analytical approach can be considered as a first attempt to theoretically evaluate the primary stability of hip stems without using FEM, which makes it fast and inexpensive compared to other methods. A reasonable agreement was found in the stability ranking of the stems obtained with both methods. However, due to the simplifying assumptions underlying the analytical model it predicts very rigid stability behaviour: estimated stem rotation was two to three orders of magnitude smaller, compared with the FEM results. Conclusion Based on the results of this study, the analytical model might be useful as a comparative tool for the assessment of the primary stability of cementless hip stems.
- Published
- 2008
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.