1. All-MEMS Lidar Using Hybrid Optical Architecture with Digital Micromirror Devices and a 2D-MEMS Mirror
- Author
-
Eunmo Kang, Heejoo Choi, Brandon Hellman, Joshua Rodriguez, Braden Smith, Xianyue Deng, Parker Liu, Ted Liang-Tai Lee, Eric Evans, Yifan Hong, Jiafan Guan, Chuan Luo, and Yuzuru Takashima
- Subjects
lidar ,MEMS ,digital micromirror device ,MEMS mirror ,time-of-flight ,solid-state lidar ,Mechanical engineering and machinery ,TJ1-1570 - Abstract
In a lidar system, replacing moving components with solid-state devices is highly anticipated to make a reliable and compact lidar system, provided that a substantially large beam area with a large angular extent as well as high angular resolution is assured for the lidar transmitter and receiver. A new quasi-solid-state lidar optical architecture employs a transmitter with a two-dimensional MEMS mirror for fine beam steering at a fraction of the degree of the angular resolution and is combined with a digital micromirror device for wide FOV scanning over 37 degree while sustaining a large aperture area of 140 mm squared. In the receiver, a second digital micromirror device is synchronized to the transmitter DMD, which enables a large FOV receiver. An angular resolution of 0.57°(H) by 0.23° (V) was achieved with 0.588 fps for scanning 1344 points within the field of view.
- Published
- 2022
- Full Text
- View/download PDF