5 results on '"Colombini, S."'
Search Results
2. Milk production, methane emissions, nitrogen, and energy balance of cows fed diets based on different forage systems.
- Author
-
Gislon, G., Colombini, S., Borreani, G., Crovetto, G.M., Sandrucci, A., Galassi, G., Tabacco, E., and Rapetti, L.
- Subjects
- *
MILK yield , *LACTATION in cattle , *ALFALFA , *RUMEN fermentation , *FORAGE , *COWS , *ANIMAL feeds , *MAGIC squares - Abstract
Eight lactating Italian Friesian cows were housed in individual respiration chambers in a repeated Latin square design to determine their dry matter intake (DMI) and their milk and methane production, as well as to collect the total feces and urine to determine the N and energy balances. Four diets, based on the following forages (% of dry matter, DM), were tested: corn silage (CS, 49.3), alfalfa silage (AS, 26.8), wheat silage (WS, 20.0), and a typical hay-based Parmigiano Reggiano cheese production diet (PR, 25.3 of both alfalfa and Italian ryegrass hay). The greatest DMI was observed for cows fed PR (23.4 vs. 20.7 kg/d, the average of the other 3 diets). The DM digestibility was lower for PR (64.5 vs. 71.7%, the average of the other diets). The highest ash-free neutral detergent fiber digestibility values were obtained for CS (50.7%) and AS (47.4%). In the present study, no differences in milk production were observed between diets, although PR showed a higher milk yield trend. The highest milk urea N concentration (mg/dL) was found for the cows fed the WS diet (13.8), and the lowest was observed for the cows fed AS (9.24). The highest milk urea N concentration for the cows fed WS was also correlated with the highest urinary N excretion (g/d), which was found for the cows fed that same diet (189 vs. 147 on average for the other diets). The protein digestibility was higher for the cows fed the CS and WS diets (on average 68.5%) than for the cows fed AS and PR (on average 57.0%); dietary soybean inclusion was higher for CS and WS than for AS and PR. The rumen fermentation pattern was affected by the diet; the cows fed the PR diet showed a higher rumen pH and decreased propionate production than those fed CS, due to the lower nonfiber carbohydrate content and higher ash-free neutral detergent fiber content of the PR diet than the CS diet. Feeding cows with PR diet increased the acetate:propionate ratio in comparison with the CS diet (3.30 vs. 2.44 for PR and CS, respectively). Cows fed the PR diet produced a greater daily amount of methane and had a greater methane energy loss (% of digestible energy intake) than those fed the CS diet (413 vs. 378 g/d and 8.67 vs. 7.70%), but no differences were observed when methane was expressed as grams per kilogram of DMI or grams per kilogram of milk. The PR diet resulted in a smaller net energy for lactation content than the CS diet (1.36 vs. 1.70 Mcal/kg of DM for the PR and CS diets, respectively). Overall, our research suggests that a satisfactory milk production can be attained by including different high-quality forages in balanced diets without any negative effect on milk production or on the methane emissions per kilogram of milk. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
3. Digestibility and metabolic utilization of diets containing whole-ear corn silage and their effects on growth and slaughter traits of heavy pigs
- Author
-
Zanfi, Cristina, Colombini, S., Mason, Federico, Galassi, G., Rapetti, L., Malagutti, L., Crovetto, G. M., and Spanghero, Mauro
- Subjects
corn silage ,digestibility ,pigs ,nitrogen ,phosphorous - Published
- 2014
4. Effect of dietary starch concentration and fish oil supplementation on milk yield and composition, diet digestibility, and methane emissions in lactating dairy cows.
- Author
-
Pirondini, M., Colombini, S., Mele, M., Malagutti, L., Rapetti, L., Galassi, G., and Crovetto, G. M.
- Subjects
- *
MILK yield , *COWS , *CATTLE feed research , *STARCH in animal nutrition , *FISH oils as feed - Abstract
The aim of this study was to evaluate the effects of diets with different starch concentrations and fish oil (FO) supplementation on lactation performance, in vivo total-tract nutrient digestibility, N balance, and methane (CH4) emissions in lactating dairy cows. The experiment was conducted as a 4 x 4 Latin square design with a 2 x 2 factorial arrangement: 2 concentrations of dietary starch [low vs. high: 23.7 and 27.7% on a dry matter (DM) basis; neutral detergent fiber/ starch ratios: 1.47 and 1.12], the presence or absence of FO supplement (0.80% on a DM basis), and their interaction were evaluated. Four Italian Friesian cows were fed 1 of the following 4 diets in 4 consecutive 26-d periods: (1) low starch (LS), (2) low starch plus FO (LSO), (3) high starch (HS), and (4) high starch plus FO (HSO). The diets contained the same amount of forages (corn silage, alfalfa and meadow hays). The starch concentration was balanced using different proportions of corn meal and soybean hulls. The cows were housed in metabolic stalls inside open-circuit respiration chambers to allow measurement of CH4 emission and the collection of separate urine and feces. No differences among treatments were observed for DM intake. We observed a trend for FO to increase milk yield: 29.2 and 27.5 kg/d, on average, for diets with and without FO, respectively. Milk fat was affected by the interaction between dietary starch and FO: milk fat decreased only in the HSO diet. Energy-corrected milk (ECM) was affected by the interaction between starch and FO, with a positive effect of FO on the LS diet. Fish oil supplementation decreased the n-6:n-3 ratio of milk polyunsaturated fatty acids. High-starch diets negatively influenced all digestibility parameters measured except starch, whereas FO improved neutral detergent fiber digestibility (41.9 vs. 46.1% for diets without and with FO, respectively, and ether extract digestibility (53.7 vs. 67.1% for diets without and with FO, respectively). We observed a trend for lower CH4 emission (g/d) and intensity (g/kg of milk) with the high-starch diets compared with the low-starch diets: 396 versus 415 g/d on average, respectively, and 14.1 versus 14.9 g/kg of milk, respectively. Methane intensity per kilogram of ECM was affected by the interaction between starch and FO, with a positive effect of FO for the LS diet: 14.5 versus 13.3 g of CH4/kg of ECM for LS and LSO diets, respectively. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
5. Digestibility and metabolic utilization of diets containing whole-ear corn silage and their effects on growth and slaughter traits of heavy pigs.
- Author
-
Zanfi, C., Colombini, S., Mason, F., Galassi, G., Rapetti, L., Malagutti, L., Crovetto, G. M., and Spanghero, M.
- Subjects
- *
SLAUGHTERING , *SILAGE , *CORN , *SWINE growth , *SWINE physiology , *SWINE nutrition , *DIGESTIVE organ physiology - Abstract
The aim was to evaluate 2 levels of dietary inclusion of chopped whole-ear corn silage (WECS) on energy and nutrient utilization, growth, and slaughter performances of heavy pigs. Two in vivo experiments were conducted to determine digestibility and metabolic utilization of WECS using 18 barrows weighing 118 ± 8 kg BW on average, metabolic cages and respiration chambers (Exp. 1), and the effect of WECS on the growth performance and carcass traits on 42 barrows from 90 to 170 kg BW (Exp. 2). In both experiments, pigs were fed 3 experimental diets: a control diet (CON) containing cereal meals, extracted soybean meal, and wheat bran (80%, 9%, and 8% of DM, respectively) and 2 diets containing 15% (15WECS) or 30% WECS (30WECS) on a DM basis in place of wheat bran and corn meal. The diets were prepared daily by mixing the WECS to a suitable compound feed. Feed intake was always restricted to allow a daily DMI of 7.2% BW0.75 in Exp. 1 and from 8.0% to 6.5% BW0 75 in Exp. 2. Diets had similar NDF contents (15.2% to 15.8% of DM), and WECS inclusion resulted in a slight reduction in CP content (from 14.0% to 13.6% of DM) and a considerable decrease in P content (from 0.47% to 0.30% of DM). Digestibility of OM, CP, and fat was similar among diets, whereas P digestibility was lower (P < 0.05) for the 30WECS diet (33.5%) in comparison with the CON and 15WECS diets (45.5% and 44.1%, respectively). Nitrogen lost in feces and urine and N retained were not different among diets, whereas P retained decreased with the increase of WECS (5.4, 3.7, and 2.2 g/d for the CON, 15WECS, and 30WECS diets, respectively; P < 0.05). No difference among diets was observed for energy balance. The WECS contained 13.48 MJ ME and 9.39 MJ NE/kg DM. In Exp. 2, feed intake was not depressed by WECS inclusion, and the ADG for the whole experiment was not different among dietary treatments (from 737 to 774 g/d). Fecal pH was lower (P < 0.05) for the WECS diets than the control diet (7.10 and 7.00 vs. 7.40) and for the sampling at 150 kg BW than that at 130 and 110 kg BW (6.96 vs. 7.29 and 7.24). At slaughter, lean percentage in the carcass was lower in the 30WECS diet than those of the other 2 diets (46.8% vs. 48.3% and 48.6%, P = 0.05). The overall experimental data obtained in both trials indicate that substitution of wheat bran and com meal for WECS (up to 30% of DM) does not affect, with the exception of P utilization and carcass leanness, energy and nutrient utilization and performance of heavy pigs in the last phase of growing. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.