1. Variation of Hodge structure and enumerating tilings of surfaces by triangles and squares
- Author
-
Koziarz, Vincent and Nguyen, Duc-Manh
- Subjects
Mathematics - Differential Geometry ,Mathematics::Logic ,Mathematics - Geometric Topology ,Mathematics - Algebraic Geometry ,Differential Geometry (math.DG) ,FOS: Mathematics ,Geometric Topology (math.GT) ,14D23, 14D07, 51M15 ,Computer Science::Computational Geometry ,Algebraic Geometry (math.AG) - Abstract
Let $S$ be a connected closed oriented surface of genus $g$. Given a triangulation (resp. quadrangulation) of $S$, define the index of each of its vertices to be the number of edges originating from this vertex minus $6$ (resp. minus $4$). Call the set of integers recording the non-zero indices the profile of the triangulation (resp. quadrangulation). If $\kappa$ is a profile for triangulations (resp. quadrangulations) of $S$, for any $m\in \mathbb{Z}_{>0}$, denote by $\mathscr{T}(\kappa,m)$ (resp. $\mathscr{Q}(\kappa,m)$) the set of (equivalence classes of) triangulations (resp. quadrangulations) with profile $\kappa$ which contain at most $m$ triangles (resp. squares). In this paper, we will show that if $\kappa$ is a profile for triangulations (resp. for quadrangulations) of $S$ such that none of the indices in $\kappa$ is divisible by $6$ (resp. by $4$), then $\mathscr{T}(\kappa,m)\sim c_3(\kappa)m^{2g+|\kappa|-2}$ (resp. $\mathscr{Q}(\kappa,m) \sim c_4(\kappa)m^{2g+|\kappa|-2}$), where $c_3(\kappa) \in \mathbb{Q}\cdot(\sqrt{3}\pi)^{2g+|\kappa|-2}$ and $c_4(\kappa)\in \mathbb{Q}\cdot\pi^{2g+|\kappa|-2}$. The key ingredient of the proof is a result of J. Koll\'ar on the link between the curvature of the Hogde metric on vector subbundles of a variation of Hodge structure over algebraic varieties, and Chern classes of their extensions. By the same method, we also obtain the rationality (up to some power of $\pi$) of the Masur-Veech volume of arithmetic affine submanifolds of translation surfaces that are transverse to the kernel foliation., Comment: 24 pages, to appear in Journal de l'Ecole Polytechnique: Math\'ematiques more...
- Published
- 2020