1. Infrared reflection absorption spectroscopy setup with incidence angle selection for surfaces of non-metals.
- Author
-
Rath, David, Mikerásek, Vojtěch, Wang, Chunlei, Eder, Moritz, Schmid, Michael, Diebold, Ulrike, Parkinson, Gareth S., and Pavelec, Jiří
- Subjects
REFLECTANCE spectroscopy ,DIELECTRIC measurements ,FOURIER transform spectrometers ,INFRARED absorption ,NUMERICAL apertures ,BREWSTER'S angle - Abstract
Infrared Reflection Absorption Spectroscopy (IRAS) on dielectric single crystals is challenging because the optimal incidence angles for light–adsorbate interaction coincide with regions of low IR reflectivity. Here, we introduce an optimized IRAS setup that maximizes the signal-to-noise ratio for non-metals. This is achieved by maximizing light throughput and by selecting optimal incidence angles that directly impact the peak heights in the spectra. The setup uses a commercial Fourier transform infrared spectrometer and is usable in ultra-high vacuum (UHV). Specifically, the optical design features sample illumination and collection mirrors with a high numerical aperture inside the UHV system and adjustable apertures to select the incidence angle range on the sample. This is important for p-polarized measurements on dielectrics because the peaks in the spectra reverse the direction at the Brewster angle (band inversion). The system components are connected precisely via a single flange, ensuring long-term stability. We studied the signal-to-noise ratio (SNR) variation in p-polarized IRAS spectra for one monolayer of CO on TiO
2 (110) as a function of incidence angle range, where a maximum SNR of 70 was achieved at 4 cm−1 resolution in a measurement time of 5 min. The capabilities for s polarization are demonstrated by measuring one monolayer D2 O adsorbed on a TiO2 (110) surface, where a SNR of 65 was achieved at a peak height ΔR/R0 of 1.4 × 10−4 in 20 min. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF