1. Is the 31P chemical shift anisotropy of aluminophosphates a useful parameter for NMR crystallography?
- Author
-
Dawson, Daniel M., Moran, Robert F., Sneddon, Scott, and Ashbrook, Sharon E.
- Subjects
- *
ANISOTROPY , *CRYSTALLOGRAPHY , *CHEMICAL shift (Nuclear magnetic resonance) , *BOND angles , *CHEMICAL bond lengths , *SPECTRAL lines - Abstract
The 31P chemical shift anisotropy (CSA) offers a potential source of new information to help determine the structures of aluminophosphate (AlPO) framework materials. We investigate how to measure the CSAs, which are small (span of ~20–30 ppm) for AlPOs, demonstrating the need for CSA‐amplification experiments (often in conjunction with 27Al and/or 1H decoupling) at high magnetic field (20.0 T) to obtain accurate values. We show that the most shielded component of the chemical shift tensor, δ33, is related to the length of the shortest P─O bond, whereas the more deshielded components, δ11 and δ22 can be related more readily to the mean P─O bond lengths and P─O─Al angles. Using the case of Mg‐doped STA‐2 as an example, the CSA is shown to be much larger for P(OAl)4–n(OMg)n environments, primarily owing to a much shorter P─O(Mg) bond affecting δ33, however, because the mean P─O bond lengths and P─O─T (T = Al, Mg) bond angles do not change significantly between P(OAl)4 and P(OAl)4–n(OMg)n sites, the isotropic chemical shifts for these species are similar, leading to overlapped spectral lines. When the CSA information is included, spectral assignment becomes unambiguous, therefore, although the specialist conditions required might preclude the routine measurement of 31P CSAs in AlPOs, in some cases (particularly doped materials), the experiments can still provide valuable additional information for spectral assignment. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF