Creating membranes with engineered surface features has been shown to reduce membrane fouling and increase flux. Surface feature patterns can be created by several means, such as thermal embossing with hard stamps, template-based micromolding, and printing. It has been proposed that the patterns create enhanced mixing and irregular fluid flow that increases mass transfer of solutes away from the membrane. The main objective of this paper is to explore whether enhanced mixing and improved mass transfer actually do take place for reverse osmosis (RO) membranes operated in laminar flow conditions typical of full-scale applications. We analyzed velocity, concentration, shear stress, and concentration polarization (CP) profiles for flat, nanopatterned, and micropatterned membranes using computational fluid dynamics. Our methods coupled the calculation of fluid flow with solute mass transport, rather than imposing a flux, as has often been done in other studies. A correlation between Sherwood number and mass-transfer coefficient for flat membranes was utilized to help characterize the hydrodynamic conditions. These results were in good agreement with the numerical simulations, providing support for the modeling results. Models with flat, several line and groove patterns, rectangular and circular pillars, and pyramids were explored. Feature sizes ranged from zero (flat) to 512 μm. The ratio of feature length, between-feature distance, and feature height was 1:1:0.5. Results indicate that patterns greatly affected velocity, shear stress, and concentration profiles. Lower shear stress was observed in the valleys between the pattern features, corresponding to the higher concentration region. Some vortices were generated in the valleys, but these were low-velocity flow features. For all of the patterned membranes CP was between 1% and 64% higher than the corresponding flat membrane. It was found that pattern roughness correlated with boundary layer thickness and thus the patterns with higher roughness caused lower mass transfer of solute away from the surface. Rather than enhancing mixing to redistribute solute, the patterns accumulated solute in valleys and behind surface features. Despite the elevated CP, the nominal permeate flux increased by as much as 40% in patterned membranes due to higher surface area compared to flat membranes. The advantageous results seen in other studies where patterns have helped increase flux may be caused by the additional surface area that patterns provide. • CFD was used to investigate membrane systems with surface features. • CP was studied to help understand the hydrodynamic influences of patterning. • Patterned membranes increased CP compared to flat membranes. • The additional surface area of patterned membranes compensates for the CP increase. [ABSTRACT FROM AUTHOR]