1. Predictive Machine Learning Models for Assessing Lebanese University Students' Depression, Anxiety, and Stress During COVID-19.
- Author
-
El Morr C, Jammal M, Bou-Hamad I, Hijazi S, Ayna D, Romani M, and Hoteit R
- Subjects
- Humans, Bayes Theorem, Universities, Anxiety diagnosis, Anxiety epidemiology, Machine Learning, Students, Depression diagnosis, Depression epidemiology, COVID-19
- Abstract
University students are experiencing a mental health crisis. COVID-19 has exacerbated this situation. We have surveyed students in 2 universities in Lebanon to gauge their mental health challenges. We have constructed a machine learning (ML) approach to predict symptoms of depression, anxiety, and stress based on demographics and self-rated health measures. Our approach involved developing 8 ML predictive models, including Logistic Regression (LR), multi-layer perceptron (MLP) neural network, support vector machine (SVM), random forest (RF) and XGBoost, AdaBoost, Naïve Bayes (NB), and K-Nearest neighbors (KNN). Following their construction, we compared their respective performances. Our evaluation shows that RF (AUC = 78.27%), NB (AUC = 76.37%), and AdaBoost (AUC = 72.96%) have provided the highest-performing AUC scores for depression, anxiety, and stress, respectively. Self-rated health is found to be the top feature in predicting depression, while age was the top feature in predicting anxiety and stress, followed by self-rated health. Future work will focus on using data augmentation approaches and extending to multi-class anxiety predictions., Competing Interests: Declaration of Conflicting InterestsThe author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
- Published
- 2024
- Full Text
- View/download PDF