1. Multi-resolution convolutional networks for chest X-ray radiograph based lung nodule detection.
- Author
-
Li X, Shen L, Xie X, Huang S, Xie Z, Hong X, and Yu J
- Subjects
- Humans, Lung Neoplasms diagnostic imaging, Lung Neoplasms pathology, Deep Learning, Lung diagnostic imaging, Lung Neoplasms diagnosis, Radiographic Image Interpretation, Computer-Assisted methods
- Abstract
Lung cancer is the leading cause of cancer death worldwide. Early detection of lung cancer is helpful to provide the best possible clinical treatment for patients. Due to the limited number of radiologist and the huge number of chest x-ray radiographs (CXR) available for observation, a computer-aided detection scheme should be developed to assist radiologists in decision-making. While deep learning showed state-of-the-art performance in several computer vision applications, it has not been used for lung nodule detection on CXR. In this paper, a deep learning-based lung nodule detection method was proposed. We employed patch-based multi-resolution convolutional networks to extract the features and employed four different fusion methods for classification. The proposed method shows much better performance and is much more robust than those previously reported researches. For publicly available Japanese Society of Radiological Technology (JSRT) database, more than 99% of lung nodules can be detected when the false positives per image (FPs/image) was 0.2. The FAUC and R-CPM of the proposed method were 0.982 and 0.987, respectively. The proposed approach has the potential of applications in clinical practice., (Copyright © 2019 Elsevier B.V. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF