6 results on '"Louati, Hassen"'
Search Results
2. Optimizing Deep Learning for Computer-Aided Diagnosis of Lung Diseases: An Automated Method Combining Evolutionary Algorithm, Transfer Learning, and Model Compression.
- Author
-
Louati, Hassen, Louati, Ali, Kariri, Elham, and Bechikh, Slim
- Subjects
DEEP learning ,COMPUTER-aided diagnosis ,EVOLUTIONARY algorithms ,CONVOLUTIONAL neural networks ,DIAGNOSIS ,LUNGS ,LUNG diseases - Abstract
Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues, particularly in the field of lung disease diagnosis. One promising avenue involves the use of chest X-Rays, which are commonly utilized in radiology. To fully exploit their potential, researchers have suggested utilizing deep learning methods to construct computer-aided diagnostic systems. However, constructing and compressing these systems presents a significant challenge, as it relies heavily on the expertise of data scientists. To tackle this issue, we propose an automated approach that utilizes an evolutionary algorithm (EA) to optimize the design and compression of a convolutional neural network (CNN) for X-Ray image classification. Our approach accurately classifies radiography images and detects potential chest abnormalities and infections, including COVID-19. Furthermore, our approach incorporates transfer learning, where a pre-trained CNN model on a vast dataset of chest X-Ray images is fine-tuned for the specific task of detecting COVID-19. This method can help reduce the amount of labeled data required for the task and enhance the overall performance of the model. We have validated our method via a series of experiments against state-of-the-art architectures. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
3. Embedding channel pruning within the CNN architecture design using a bi-level evolutionary approach.
- Author
-
Louati, Hassen, Louati, Ali, Bechikh, Slim, and Kariri, Elham
- Subjects
- *
ARTIFICIAL neural networks , *CONVOLUTIONAL neural networks , *ARCHITECTURAL design , *BILEVEL programming , *COMPUTER vision , *DEEP learning , *EVOLUTIONARY algorithms - Abstract
Remarkable advancements have been achieved in machine learning and computer vision through the utilization of deep neural networks. Among the most advantageous of these networks is the convolutional neural network (CNN). It has been used in pattern recognition, medical diagnosis, and signal processing, among other things. Actually, for these networks, the challenge of choosing hyperparameters is of utmost importance. The reason behind this is that as the number of layers rises, the search space grows exponentially. In addition, all known classical and evolutionary pruning algorithms require a trained or built architecture as input. During the design phase, none of them consider the process of pruning. In order to assess the effectiveness and efficiency of any architecture created, pruning of channels must be carried out before transmitting the dataset and computing classification errors. For instance, following pruning, an architecture of medium quality in terms of classification may transform into an architecture that is both highly light and accurate, and vice versa. There exist countless potential scenarios that could occur, which prompted us to develop a bi-level optimization approach for the entire process. The upper level involves generating the architecture while the lower level optimizes channel pruning. Evolutionary algorithms (EAs) have proven effective in bi-level optimization, leading us to adopt the co-evolutionary migration-based algorithm as a search engine for our bi-level architectural optimization problem in this research. Our proposed method, CNN-D-P (bi-level CNN design and pruning), was tested on the widely used image classification benchmark datasets, CIFAR-10, CIFAR-100 and ImageNet. Our suggested technique is validated by means of a set of comparison tests with regard to relevant state-of-the-art architectures. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
4. Exploring the Advancements and Future Research Directions of Artificial Neural Networks: A Text Mining Approach.
- Author
-
Kariri, Elham, Louati, Hassen, Louati, Ali, and Masmoudi, Fatma
- Subjects
DEEP learning ,ARTIFICIAL neural networks ,TEXT mining ,MACHINE learning ,FEATURE selection ,FEATURE extraction - Abstract
Artificial Neural Networks (ANNs) are machine learning algorithms inspired by the structure and function of the human brain. Their popularity has increased in recent years due to their ability to learn and improve through experience, making them suitable for a wide range of applications. ANNs are often used as part of deep learning, which enables them to learn, transfer knowledge, make predictions, and take action. This paper aims to provide a comprehensive understanding of ANNs and explore potential directions for future research. To achieve this, the paper analyzes 10,661 articles and 35,973 keywords from various journals using a text-mining approach. The results of the analysis show that there is a high level of interest in topics related to machine learning, deep learning, and ANNs and that research in this field is increasingly focusing on areas such as optimization techniques, feature extraction and selection, and clustering. The study presented in this paper is motivated by the need for a framework to guide the continued study and development of ANNs. By providing insights into the current state of research on ANNs, this paper aims to promote a deeper understanding of ANNs and to facilitate the development of new techniques and applications for ANNs in the future. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
5. Joint design and compression of convolutional neural networks as a Bi-level optimization problem.
- Author
-
Louati, Hassen, Bechikh, Slim, Louati, Ali, Aldaej, Abdulaziz, and Said, Lamjed Ben
- Subjects
- *
CONVOLUTIONAL neural networks , *ARTIFICIAL neural networks , *COMPUTER vision , *DEEP learning , *EVOLUTIONARY algorithms , *ARCHITECTURAL design , *BILEVEL programming - Abstract
Over the last decade, deep neural networks have shown great success in the fields of machine learning and computer vision. Currently, the CNN (convolutional neural network) is one of the most successful networks, having been applied in a wide variety of application domains, including pattern recognition, medical diagnosis and signal processing. Despite CNNs' impressive performance, their architectural design remains a significant challenge for researchers and practitioners. The problem of selecting hyperparameters is extremely important for these networks. The reason for this is that the search space grows exponentially in size as the number of layers increases. In fact, all existing classical and evolutionary pruning methods take as input an already pre-trained or designed architecture. None of them take pruning into account during the design process. However, to evaluate the quality and possible compactness of any generated architecture, filter pruning should be applied before the communication with the data set to compute the classification error. For instance, a medium-quality architecture in terms of classification could become a very light and accurate architecture after pruning, and vice versa. Many cases are possible, and the number of possibilities is huge. This motivated us to frame the whole process as a bi-level optimization problem where: (1) architecture generation is done at the upper level (with minimum NB and NNB) while (2) its filter pruning optimization is done at the lower level. Motivated by evolutionary algorithms' (EAs) success in bi-level optimization, we use the newly suggested co-evolutionary migration-based algorithm (CEMBA) as a search engine in this research to address our bi-level architectural optimization problem. The performance of our suggested technique, called Bi-CNN-D-C (Bi-level convolution neural network design and compression), is evaluated using the widely used benchmark data sets for image classification, called CIFAR-10, CIFAR-100 and ImageNet. Our proposed approach is validated by means of a set of comparative experiments with respect to relevant state-of-the-art architectures. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
6. Deep convolutional neural network architecture design as a bi-level optimization problem.
- Author
-
Louati, Hassen, Bechikh, Slim, Louati, Ali, Hung, Chih-Cheng, and Ben Said, Lamjed
- Subjects
- *
BILEVEL programming , *CONVOLUTIONAL neural networks , *ARCHITECTURAL design , *REINFORCEMENT learning , *ARTIFICIAL neural networks , *SIGNAL convolution , *SIGNAL processing - Abstract
[Display omitted] • We summarize the state-of-the-art of convolutional neural architecture search. • We model the convolutional neural network design as a bi-level optimization problem. • We develop BLOP-CNN as a new solution approach to our bi-level model. • We evaluate the performance of our proposal with respect to relevant existing works. During the last decade, deep neural networks have shown a great performance in many machine learning tasks such as classification and clustering. One of the most successful networks is the CNN (Convolutional Neural Network), which has been applied in many application domains such as pattern recognition, medical diagnosis, and signal processing. Despite the very interesting performance of CNNs, their architecture design is still so far a major challenge for researchers and practitioners. Several works have been proposed in the literature with the aim to find optimized architectures such as ResNet and VGGNet. Unfortunately, most of these architectures are either manually defined by experts or automatically designed by greedy induction algorithms. Recent works suggest the use of Evolutionary Algorithms (EAs) thanks to their ability to escape locally-optimal architectures. Despite the fact that EAs have shown interesting performance, researchers in this direction have considered the design task as a single-level optimization problem; which represents the main research gap we tackle in this paper. The main contribution behind our work consists in the fact that CNN architecture design has a hierarchical nature and thus could be seen as a Bi-Level Optimization Problem (BLOP) where: (1) the upper level minimizes the network complexity defined by the number of blocks and the number of nodes per block; and (2) the lower level optimizes the convolution block 'graphs' topologies by maximizing the classification accuracy. Motivated by the originality of our observation with respect to the state of the art, we frame for the first time the CNN architecture design problem as a BLOP and then solve it using an adapted version of an existing efficient bi-level EA; through the definition of the solution encoding, the fitness function, and the variation operators at each level. The adapted EA is named BLOP-CNN and is assessed on the image classification task using the commonly employed CIFAR-10 and CIFAR-100 benchmark data sets. The analysis of our experimental results show the merits of our proposed method in providing the user with optimized architectures that outperform many recent and prominent architectures coming from the three different approaches, namely: manual design, reinforcement learning-based generation, and evolutionary optimization. Moreover, to show the applicability of our approach, we have conducted a case study on the detection of the COVID-19 using a set of benchmark chest X-ray and Computed Tomography (CT) images. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.