4 results on '"Hajiyianni, Marina"'
Search Results
2. Application of an artificial intelligence-based tool in [18F]FDG PET/CT for the assessment of bone marrow involvement in multiple myeloma
- Author
-
Sachpekidis, Christos, Enqvist, Olof, Ulén, Johannes, Kopp-Schneider, Annette, Pan, Leyun, Jauch, Anna, Hajiyianni, Marina, John, Lukas, Weinhold, Niels, Sauer, Sandra, Goldschmidt, Hartmut, Edenbrandt, Lars, and Dimitrakopoulou-Strauss, Antonia
- Published
- 2023
- Full Text
- View/download PDF
3. Artificial intelligence–based, volumetric assessment of the bone marrow metabolic activity in [18F]FDG PET/CT predicts survival in multiple myeloma.
- Author
-
Sachpekidis, Christos, Enqvist, Olof, Ulén, Johannes, Kopp-Schneider, Annette, Pan, Leyun, Mai, Elias K., Hajiyianni, Marina, Merz, Maximilian, Raab, Marc S., Jauch, Anna, Goldschmidt, Hartmut, Edenbrandt, Lars, and Dimitrakopoulou-Strauss, Antonia
- Subjects
ARTIFICIAL intelligence ,BONE marrow ,MULTIPLE myeloma ,IMAGE segmentation ,PLASMA cells ,RECEIVER operating characteristic curves ,LIVER - Abstract
Purpose: Multiple myeloma (MM) is a highly heterogeneous disease with wide variations in patient outcome. [
18 F]FDG PET/CT can provide prognostic information in MM, but it is hampered by issues regarding standardization of scan interpretation. Our group has recently demonstrated the feasibility of automated, volumetric assessment of bone marrow (BM) metabolic activity on PET/CT using a novel artificial intelligence (AI)–based tool. Accordingly, the aim of the current study is to investigate the prognostic role of whole-body calculations of BM metabolism in patients with newly diagnosed MM using this AI tool. Materials and methods: Forty-four, previously untreated MM patients underwent whole-body [18 F]FDG PET/CT. Automated PET/CT image segmentation and volumetric quantification of BM metabolism were based on an initial CT-based segmentation of the skeleton, its transfer to the standardized uptake value (SUV) PET images, subsequent application of different SUV thresholds, and refinement of the resulting regions using postprocessing. In the present analysis, ten different uptake thresholds (AI approaches), based on reference organs or absolute SUV values, were applied for definition of pathological tracer uptake and subsequent calculation of the whole-body metabolic tumor volume (MTV) and total lesion glycolysis (TLG). Correlation analysis was performed between the automated PET values and histopathological results of the BM as well as patients' progression-free survival (PFS) and overall survival (OS). Receiver operating characteristic (ROC) curve analysis was used to investigate the discrimination performance of MTV and TLG for prediction of 2-year PFS. The prognostic performance of the new Italian Myeloma criteria for PET Use (IMPeTUs) was also investigated. Results: Median follow-up [95% CI] of the patient cohort was 110 months [105–123 months]. AI-based BM segmentation and calculation of MTV and TLG were feasible in all patients. A significant, positive, moderate correlation was observed between the automated quantitative whole-body PET/CT parameters, MTV and TLG, and BM plasma cell infiltration for all ten [18 F]FDG uptake thresholds. With regard to PFS, univariable analysis for both MTV and TLG predicted patient outcome reasonably well for all AI approaches. Adjusting for cytogenetic abnormalities and BM plasma cell infiltration rate, multivariable analysis also showed prognostic significance for high MTV, which defined pathological [18 F]FDG uptake in the BM via the liver. In terms of OS, univariable and multivariable analysis showed that whole-body MTV, again mainly using liver uptake as reference, was significantly associated with shorter survival. In line with these findings, ROC curve analysis showed that MTV and TLG, assessed using liver-based cut-offs, could predict 2-year PFS rates. The application of IMPeTUs showed that the number of focal hypermetabolic BM lesions and extramedullary disease had an adverse effect on PFS. Conclusions: The AI-based, whole-body calculations of BM metabolism via the parameters MTV and TLG not only correlate with the degree of BM plasma cell infiltration, but also predict patient survival in MM. In particular, the parameter MTV, using the liver uptake as reference for BM segmentation, provides solid prognostic information for disease progression. In addition to highlighting the prognostic significance of automated, global volumetric estimation of metabolic tumor burden, these data open up new perspectives towards solving the complex problem of interpreting PET scans in MM with a simple, fast, and robust method that is not affected by operator-dependent interventions. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF
4. Application of an artificial intelligence-based tool in [18F]FDG PET/CT for the assessment of bone marrow involvement in multiple myeloma.
- Author
-
Sachpekidis, Christos, Enqvist, Olof, Ulén, Johannes, Kopp-Schneider, Annette, Pan, Leyun, Jauch, Anna, Hajiyianni, Marina, John, Lukas, Weinhold, Niels, Sauer, Sandra, Goldschmidt, Hartmut, Edenbrandt, Lars, and Dimitrakopoulou-Strauss, Antonia
- Subjects
DEEP learning ,ARTIFICIAL intelligence ,BONE marrow ,MULTIPLE myeloma ,CLINICAL trials ,GLUTEAL muscles - Abstract
Purpose: [
18 F]FDG PET/CT is an imaging modality of high performance in multiple myeloma (MM). Nevertheless, the inter-observer reproducibility in PET/CT scan interpretation may be hampered by the different patterns of bone marrow (BM) infiltration in the disease. Although many approaches have been recently developed to address the issue of standardization, none can yet be considered a standard method in the interpretation of PET/CT. We herein aim to validate a novel three-dimensional deep learning-based tool on PET/CT images for automated assessment of the intensity of BM metabolism in MM patients. Materials and methods: Whole-body [18 F]FDG PET/CT scans of 35 consecutive, previously untreated MM patients were studied. All patients were investigated in the context of an open-label, multicenter, randomized, active-controlled, phase 3 trial (GMMG-HD7). Qualitative (visual) analysis classified the PET/CT scans into three groups based on the presence and number of focal [18 F]FDG-avid lesions as well as the degree of diffuse [18 F]FDG uptake in the BM. The proposed automated method for BM metabolism assessment is based on an initial CT-based segmentation of the skeleton, its transfer to the SUV PET images, the subsequent application of different SUV thresholds, and refinement of the resulting regions using postprocessing. In the present analysis, six different SUV thresholds (Approaches 1–6) were applied for the definition of pathological tracer uptake in the skeleton [Approach 1: liver SUVmedian × 1.1 (axial skeleton), gluteal muscles SUVmedian × 4 (extremities). Approach 2: liver SUVmedian × 1.5 (axial skeleton), gluteal muscles SUVmedian × 4 (extremities). Approach 3: liver SUVmedian × 2 (axial skeleton), gluteal muscles SUVmedian × 4 (extremities). Approach 4: ≥ 2.5. Approach 5: ≥ 2.5 (axial skeleton), ≥ 2.0 (extremities). Approach 6: SUVmax liver]. Using the resulting masks, subsequent calculations of the whole-body metabolic tumor volume (MTV) and total lesion glycolysis (TLG) in each patient were performed. A correlation analysis was performed between the automated PET values and the results of the visual PET/CT analysis as well as the histopathological, cytogenetical, and clinical data of the patients. Results: BM segmentation and calculation of MTV and TLG after the application of the deep learning tool were feasible in all patients. A significant positive correlation (p < 0.05) was observed between the results of the visual analysis of the PET/CT scans for the three patient groups and the MTV and TLG values after the employment of all six [18 F]FDG uptake thresholds. In addition, there were significant differences between the three patient groups with regard to their MTV and TLG values for all applied thresholds of pathological tracer uptake. Furthermore, we could demonstrate a significant, moderate, positive correlation of BM plasma cell infiltration and plasma levels of β2-microglobulin with the automated quantitative PET/CT parameters MTV and TLG after utilization of Approaches 1, 2, 4, and 5. Conclusions: The automated, volumetric, whole-body PET/CT assessment of the BM metabolic activity in MM is feasible with the herein applied method and correlates with clinically relevant parameters in the disease. This methodology offers a potentially reliable tool in the direction of optimization and standardization of PET/CT interpretation in MM. Based on the present promising findings, the deep learning-based approach will be further evaluated in future prospective studies with larger patient cohorts. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.