The aluminothermic (AT) process utilises a self-propagating high-temperature synthesis (SHS) type reaction for producing primarily thermite steel and alumina slag at high temperatures during the welding of rails. In this work, an investigation on the early stages of the aluminothermic process, the separation of AT reaction products and mould filling has been carried out, using both experimental and computational methods to predict the time duration of a complete separation and to obtain a better understanding of the internal multiphase flow within the crucible and mould. The decomposition of AT reaction products after the combustion and the subsequent mould filling by thermite steel and alumina slag have been simulated numerically, using a diffusive phase field and volume-of-fluid model. However, to minimize numerical errors on the input parameters of the high- temperature multiphase flow, a careful review on transport properties has been made. Missing data, e.g. the contact angle of thermite steel on waterglass-bonded mould and crucible wall material has been investigated experimentally. Being further necessary for the prediction of the separation time of AT reaction products in compacted thermite, results on the propagation front velocity show a decreasing trend with increasing initial compact temperature. Further, the combustion front velocity is used for a subsequent analysis of the separation time, which is obtained from the phase distribution of thermite steel, alumina slag and intermetallic compounds, using a combustion front quenching (CFQ) methodology. Moreover, geometric modifications on the crucible and mould have been developed for a reduction in changeover time, as well as an optimized multiphase flow field. Their performance during crucible discharge and mould filling has been verified numerically. Furthermore, alumina slag inclusions have been tracked within the mould using a volume-of-fluid approach with their final positions being verified through an authentic welding. Während des aluminothermischen (AT) Prozesses findet eine SHS-Reaktion Anwendung, um primär Thermitstahl und Aluminiumoxidschlacke bei hohen Temperaturen für das Verschweißen von Bahnschienen herzustellen. In dieser Arbeit wurden Anfangsstadien, welche die Separation der AT-Reaktionsprodukte sowie das Füllen der Gießform einbeziehen, unter Anwendung von sowohl experimentellen als auch numerischen Verfahren untersucht. Damit konnte die Zeitdauer einer kompletten Separation ermittelt und ein genaueres Verständnis der Mehrphasenströmung in Tiegel und Gießform erlangt werden. Die Separation der AT-Reaktionsprodukte nach der aluminothermischen Reaktion und die anschließende Formfüllung wurden mit einem diffusen Phasenfeld und einem Volume-of-Fluid-Modell numerisch berechnet. Für die Minimierung numerischer Fehler in den Eingangsgrößen dieser Hochtemperatur-Mehrphasenströmungen wurde eine intensive Literaturrecherche durchgeführt und fehlende Parameter, wie zum Beispiel die Kontaktwinkel von Thermitstahl auf Wasserglas gebundenem Form- und Tiegelmaterial, wurden experimentell ermittelt. Messungen der Reaktionsfrontgeschwindigkeit in gepresstem Thermit sind notwendig für eine Vorhersage der Separationszeit der AT-Reaktionsprodukte, und die Ergebnisse zeigen einen linear abfallenden Trend mit zunehmender Anfangstemperatur des verdichteten Materials. In dieser Arbeit wurde die Geschwindigkeit der Reaktionsfront verwendet, um aus der Phasenverteilung von Thermitstahl, Aluminiumoxidschlacke und intermetallischen Verbindungen als Ergebnis des CFQ-Experimentes die Separationszeit in verdichtetem Thermit zu approximieren. Es wurden Modifikationen an Tiegel und Gießform erprobt, die für eine Verbesserung der internen Strömungsführung sowie für die Reduzierung der Umrüstzeit sorgen sollen. Die Effizienz dieser Veränderungen wurde anschließend mit numerischen Methoden überprüft. Des Weiteren konnten durch eine Realschweißung die numerisch vorhergesagten finalen Positionen von Schlackeeinschlüssen innerhalb der Gießform verifiziert werden.