1. Propagation, detection and correction of errors using the sequence database network.
- Author
-
Goudey B, Geard N, Verspoor K, and Zobel J
- Subjects
- Amino Acid Sequence, Databases, Nucleic Acid, Computational Biology
- Abstract
Nucleotide and protein sequences stored in public databases are the cornerstone of many bioinformatics analyses. The records containing these sequences are prone to a wide range of errors, including incorrect functional annotation, sequence contamination and taxonomic misclassification. One source of information that can help to detect errors are the strong interdependency between records. Novel sequences in one database draw their annotations from existing records, may generate new records in multiple other locations and will have varying degrees of similarity with existing records across a range of attributes. A network perspective of these relationships between sequence records, within and across databases, offers new opportunities to detect-or even correct-erroneous entries and more broadly to make inferences about record quality. Here, we describe this novel perspective of sequence database records as a rich network, which we call the sequence database network, and illustrate the opportunities this perspective offers for quantification of database quality and detection of spurious entries. We provide an overview of the relevant databases and describe how the interdependencies between sequence records across these databases can be exploited by network analyses. We review the process of sequence annotation and provide a classification of sources of error, highlighting propagation as a major source. We illustrate the value of a network perspective through three case studies that use network analysis to detect errors, and explore the quality and quantity of critical relationships that would inform such network analyses. This systematic description of a network perspective of sequence database records provides a novel direction to combat the proliferation of errors within these critical bioinformatics resources., (© The Author(s) 2022. Published by Oxford University Press.)
- Published
- 2022
- Full Text
- View/download PDF