1. Bridging multimedia heterogeneity gap via Graph Representation Learning for cross-modal retrieval.
- Author
-
Cheng Q and Gu X
- Subjects
- Humans, Information Storage and Retrieval methods, Databases, Factual trends, Information Storage and Retrieval trends, Machine Learning trends, Multimedia trends
- Abstract
Information retrieval among different modalities becomes a significant issue with many promising applications. However, inconsistent feature representation of various multimedia data causes the "heterogeneity gap" among various modalities, which is a challenge in cross-modal retrieval. For bridging the "heterogeneity gap," the popular methods attempt to project the original data into a common representation space, which needs great fitting ability of the model. To address the above issue, we propose a novel Graph Representation Learning (GRL) method for bridging the heterogeneity gap, which does not project the original feature into an aligned representation space but adopts a cross-modal graph to link different modalities. The GRL approach consists of two subnetworks, Feature Transfer Learning Network (FTLN) and Graph Representation Learning Network (GRLN). Firstly, FTLN model finds a latent space for each modality, where the cosine similarity is suitable to describe their similarity. Then, we build a cross-modal graph to reconstruct the original data and their relationships. Finally, we abandon the features in the latent space and turn into embedding the graph vertexes into a common representation space directly. During the process, the proposed Graph Representation Learning method bypasses the most challenging issue by utilizing a cross-modal graph as a bridge to link the "heterogeneity gap" among different modalities. This attempt utilizes a cross-modal graph as an intermediary agent to bridge the "heterogeneity gap" in cross-modal retrieval, which is simple but effective. Extensive experiment results on six widely-used datasets indicate that the proposed GRL outperforms other state-of-the-art cross-modal retrieval methods., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020 Elsevier Ltd. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF