1. Generating Rare Association Rules Using the Minimal Rare Itemsets Family
- Author
-
Szathmary, Laszlo, Valtchev, Petko, Napoli, Amedeo, Laboratory for Research on Technology for ECommerce (LATECE Laboratory - UQAM Montreal), Université du Québec à Montréal = University of Québec in Montréal (UQAM), Département de Mathématiques et de statistique [UdeM- Montréal] (DMS), Knowledge representation, reasonning (ORPAILLEUR), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), and Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[INFO.INFO-IR]Computer Science [cs]/Information Retrieval [cs.IR] ,itemset extraction ,data mining ,rare itemsets ,rare item problem ,rare association rules ,knowledge discovery in databases (kdd) - Abstract
International audience; Rare association rules correspond to rare, or infrequent, itemsets, as opposed to frequent ones that are targeted by conventional pattern miners. Rare rules reflect regularities of local, rather than global, scope that can nevertheless provide valuable insights to an expert, especially in areas such as genetics and medical diagnosis where some specific deviations/illnesses occur only in a small number of cases. The work presented here is motivated by the long-standing open question of efficiently mining strong rare rules, i.e., rules with high confidence and low support. We also propose an efficient solution for finding the set of minimal rare itemsets. This set serves as a basis for generating rare association rules.
- Published
- 2010