6 results on '"Doğan, Yunus"'
Search Results
2. A Novel Approach for Knowledge Discovery from AIS Data: An Application for Transit Marine Traffic in the Sea of Marmara.
- Author
-
DOĞAN, Yunus, KART, Özge, KUNDAKÇI, Burak, and NAS, Selçuk
- Subjects
SELF-organizing maps ,DATA mining ,AUTOMATIC identification ,ELECTRONIC data processing ,HIERARCHICAL clustering (Cluster analysis) - Abstract
This paper addresses the discovery of hidden patterns in the data of Automatic Identification Systems by a novel clustering model using data processing and data mining methods. It reveals the transit tracks and the transit vessels on these tracks in the Sea of Marmara which has a dense marine traffic. In this study, improved Density Based Spatial Clustering of Applications with Noise and KMeans++ clustering algorithms have been used together with complex database queries. This proposed approach has been compared to other clustering algorithms such as Self-Organizing Map, Hierarchical Clustering with Single-Link and Genetic Clustering. It has been observed that these alternative algorithms could not reach high accuracy values and they could not give the expected tracks. The proposed approach has five steps and experimental results demonstrate that when this novel approach has been applied step by step, the results can match the observed data by The Republic of Turkey, Ministry of Transport, Maritime and Communications by 95%. Finally, this novel approach is suggested to maritime authorities for all the seas in the world to manage the vessel traffic which has big and complex data. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
3. Knowledge Discovery Using Clustering Methods in Medicine: A Case Study for Reflux Disease.
- Author
-
DOĞAN, Yunus and RIDAOUI, Fatma
- Subjects
- *
DATA mining , *SELF-organizing maps , *ARTIFICIAL intelligence , *SUM of squares - Abstract
Digitalization spreads day by day around the world; thus, the amount of data collected is on the rise. An increasing amount of data leads us to use the data and get the advantage of it by using methods like Data mining. Data mining is used in several industries. Especially as medical data is essential to be understood, it is crucial to work on it. Reflux disease is a painful illness spreading around the world. Reflux is more common compared to formerly known numbers of patients. Even though reflux is not as fatal as cancer, it decreases the quality of life and makes many people suffer in their daily life. So, reflux is affecting mental health directly. If we can ease the process of diagnosis of reflux, we may provide a better quality of life for people. In this study, various data mining algorithms are applied, and it is seen from results that medical care can be improved by changing. Nowadays, artificial intelligence applications in the field of gastroenterology stand out in various sources in the literature. However, a large database required that is specific for Reflux disease to implement these applications is available only at the Reflux Research Center in Ege University in Turkey. By benefiting the Short Form36 and Quadrad12 questionnaire data in this database, 3,909 patients and many artificial intelligence algorithms were used to discover the hidden associations among responses in the quality of life of these patients. The algorithms used in the tests are Apriori, Frequent Pattern Growth, Density-Based Spatial Clustering of Applications with Noise, Self-Organizing Map, and KMeans. In the tests, it was observed that the most successful algorithm in terms of the structure of the data was KMeans, and a set of remarkable 27 rules according to the optimal Sum of Square Error value was obtained. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
4. Summarizing Data Sets for Data Mining by Using Statistical Methods in Coastal Engineering
- Author
-
Doğan, Yunus and Durap, Ahmet
- Subjects
Clustering algorithms ,statistical methods ,coastal engineering ,data mining ,data summarization - Abstract
Coastal regions are the one of the most commonly used places by the natural balance and the growing population. In coastal engineering, the most valuable data is wave behaviors. The amount of this data becomes very big because of observations that take place for periods of hours, days and months. In this study, some statistical methods such as the wave spectrum analysis methods and the standard statistical methods have been used. The goal of this study is the discovery profiles of the different coast areas by using these statistical methods, and thus, obtaining an instance based data set from the big data to analysis by using data mining algorithms. In the experimental studies, the six sample data sets about the wave behaviors obtained by 20 minutes of observations from Mersin Bay in Turkey and converted to an instance based form, while different clustering techniques in data mining algorithms were used to discover similar coastal places. Moreover, this study discusses that this summarization approach can be used in other branches collecting big data such as medicine., {"references":["C. P. Wei, Y. H. Lee and C. M. Hsu, \"Empirical comparison of fast partitioning-based clustering algorithms for large data sets\", Expert Systems with Applications, vol. 24, no. 4, pp. 351-361, 2003.","M. J. Shaw, C. Subramaniam, G. W. Tan and M. E. Welge, \"Knowledge management and data mining for marketing\", Decision Support Systems, vol. 1, no. 31, pp. 128-138, 2001.","S. H. Liao, \"Knowledge management technologies and applications -literature review from 1995 to 2002\", Expert Systems with Applications, vol. 25, no. 2, pp. 157-167, 2003.","E. W. M. Ma and T. W. S. Chow, \"A new shifting grid clustering algorithm\", Pattern Recognition, vol. 37, no. 3, pp. 503-513, 2004.","J. A. McCarty and M. Hastak, \"Segmentation approaches in data mining: A comparison of RFM, CHAID and Logistic Regression\", Journal of Business Research, vol. 60, no. 6, pp. 656-666, 2009.","G. G. Emel, C. Taskin and S. Kilicarslan, \"An analysis at the process of steel production by using artificial neural network\", Journal of Dokuz Eylül University, vol. 5, no. 1, pp. 206-207, 2004.","C. Rygielski, J. C. Wang and D. C. Yen, \"Data mining techniques for customer relationship management\", Technology in Society, vol. 24, no. 4, pp. 488-498, 2002.","H. M. Moshkovich, A. I. Mechitov and D. L. Olson, \"Rule induction in data mining: Effect of ordinal scales\", Expert Systems with Applications, vol. 22, no. 4, pp. 303-304, 2002.","C. Budayan, I. Dikmen ve M. T. Birgonul, \"Comparing the performance of traditional cluster analysis, self-organizing maps and fuzzy c-means method for strategic grouping\", Expert Systems with Applications, vol. 36, no. 9, pp. 117-127, 2009.\n[10]\tR. J. Kuo, L. M. Ho and C. M. Hu, \"Cluster analysis in industrial market segmentation through artificial neural network\", Computers & Industrial Engineering, vol. 42, no. 4, pp. 393-403, 2002.\n[11]\tA. Likas, N. Vlassis and J. J. Verbeek, \"The global k-means clustering algorithm\", Pattern Recognition, vol. 36, no. 2, pp. 451-461, 2003.\n[12]\tC. H. Hsu, \"Data mining to improve industrial standards and enhance production and marketing: An empirical study in apparel industry\", Expert Systems with Applications, vol. 36, no. 3, pp. 504-514, 2009.\n[13]\tB. Hammer, A. Micheli, A. Sperduti and M. Strickert, \"Recursive self-organizing network models\", Neural Networks, vol. 17, no. 10, pp. 1061-1071, 2004.\n[14]\tD. G. Roussinov and H. Chen, \"Document clustering for electronic meetings: An experimental comparison of two techniques\", Decision Support Systems, vol. 27, no. 2, pp. 70-80, 1999.\n[15]\tB. Aydogan, B. Ayat, M. N. Ozturk, Y. Yuksel and E. O. Cevik, \"Modeling of water level changes in the Bosphorus\", The 6th National Coastal Engineering Symposium, Izmir, Turkey, 2007, pp. 271-278.\n[16]\tM. L. Koc, C. E. Balas and A. Arsla, \"Preliminary design of artificial neural networks of stone filled breakwaters\", IMO Technical Journal, vol. 225, no. 11, pp. 3351-3375, 2004.\n[17]\tD. F. Milliea, G. R. Weckmanc, W. A. Y. IId, J. E. Iveye, D. P. Friesf, E. Ardjmandc and G. L. Fahnenstielb, \"Coastal 'big data' and nature-inspired computation: Prediction potentials, uncertainties, and knowledge derivation of neural networks for an algal metric\", Coastal and Shelf Science, vol. 125, pp. 57–67, 2013.\n[18]\tH. C. Seyffert and A. W. Troesch, \"Data mining Pt. Reyes Buoy for rare wave groups\", Journal of Offshore Mechanics and Arctic Engineering, vol. 138, no. 1, pp. 1-8, 2015.\n[19]\tP. A. Conrads and E. A. Roehl, \"The use of data-mining techniques for developing effective decision support systems: a case study of simulating the effects of climate change on coastal salinity intrusion\", The Geological Society of London, vol. 408, 2015.\n[20]\tC. H. Chang, C. C. Liu, H. W. Chung, L. J. Lee and W. C. Yang, \"Development and evaluation of a genetic algorithm-based ocean color inversion model for simultaneously retrieving optical properties and bottom types in coral reef regions\", Applied Optics, vol. 53, no. 4, pp. 605-617, 2014.\n[21]\tS. Gao, \"Shallow water depth inversion based on data mining models\", B.S., China University of Petroleum (East China), 2013.\n[22]\tW. Huang, C. Murray, N. Kraus and J. Rosati, \"Development of a regional neural network for coastal water level predictions\", Ocean Engineering, vol. 30, pp. 2275–2295, 2003.\n[23]\tO. Makarynskyya, A. A. Pires-Silvab, D. Makarynskaa and C. Ventura-Soaresc, \"Artificial neural networks in wave predictions at the west coast of Portugal\", Computers & Geosciences, vol. 31, pp. 415–424, 2005.\n[24]\tL. H. Holthuijsen, \"Waves in Oceanic and Coastal Waters\", Cambridge University Press, pp. 27-28."]}
- Published
- 2017
- Full Text
- View/download PDF
5. Data mining and knowledge discovery in medical information systems
- Author
-
Doğan, Yunus, Kut, Recep Alp, and Bilgisayar Mühendisliği Ana Bilim Dalı
- Subjects
Quantum algorithms ,Knowledge ,Medical informatics ,Genetic algorithms ,Classification ,Data mining ,Computer Engineering and Computer Science and Control ,Clustering ,Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol - Abstract
Hastane Bilgi Yönetim Sistemleri kamu ve özel hastanelerinin tamamımda kullanılmaktadır. Yirmi dört saat kesintisiz olarak yeni tıbbi verilerin kaydedildiği bu geniş veri tabanlarında, biriken bu değerli veriler günümüzde sadece kurum içinde gerekli raporlama ve sorgular için kullanılmakta ve temiz veri ambarları şeklinde tutulamadığından her hangi bir akademik çalışma için değerlendirilemediğine tanık olmaktayız. Bu tezde tıbbi verilerin belirli sınırlar dâhilinde ve standart protokoller ile akademik çalışmalar için açık kaynak olması gerektiğine vurgu yapılacak, gerçekleştirdiğim tıbbi bilişim sistemleri ve tıbbi uygulamalarda bu verilerin işlenip nasıl kıymetli sonuçların elde edilebileceğinden bahsedilecektir. Tezdeki çalışmalar `tıbbi laboratuarlar`, `yüz ve boyun kanserleri` ve `beslenme ve diyet` alanları üzerine yapılmıştır. Bu üç alan için MSSQL veri tabanı ve C# programlama dili ile ASP.NET kullanılarak yeni bilişim sistemleri geliştirilmiştir. Böylece, temiz ve işlenebilir verilerin bu sistemlere toplanması sağlanmış ve veri madenciliği ve bilgi keşfi tekniği bu bilişim sistemleri için farklı algoritma yaklaşımları ile uygulanabilmiştir.Çalışmalarda veri madenciliği tekniklerinden farklı yaklaşımlara sahip kümeleme algoritmaları geliştirilmiştir. İlk olarak, bu algoritmalar etik kurul izinleri alınmış laboratuar verilerinin analizi için kullanılmıştır. İkinci olarak, yine etik kurul izinleri alınmış yüz ve boyun kanser verilerinin analizi için farklı yaklaşımlı kümeleme algoritmalar kullanılmıştır. Son olarak beslenme ve diyet veri kümesi melez kuantum genetik algoritması ile optimize edilmiştir.Geliştirilen kümeleme algoritmaları kendi kendini düzenleyen haritalar, k-ortalama++ algoritmaları ve onların farklı yaklaşımları ile karşılaştırılmıştır. Bunun yanında, geliştirilmiş melez kuantum genetik algoritması, geleneksel genetik algoritma ve kuantum genetik algoritma ile karşılaştırılmıştır. Sonuç olarak da geleneksel yöntemlere nazaran daha hızlı ve doğruluğu daha yüksek desenler elde edilebilmiştir. Hospital Information Management Systems are used in all public and private hospitals. Valuable data which is obtained from these big databases, where updated data are collected continuously during all day, is used for only some necessary reports and queries inside of the corporation, and this data may not be considered for an academic study, because it is not held as a clean data warehouse. In this thesis, it is underlined that this data should be an open source with standard protocols under definite boundaries for academic studies in order to supply the improvement of medical research, and it is mentioned that how this data is processed and valuable patterns are obtained. There are studies about three branches, `medical laboratories`, `head and neck cancers` and `nutrition and diets` in this thesis. For these three branches, new information systems have been implemented by using the technologies of MSSQL database and ASP.NET with C# programming languages. Thus, it has supplied to collect clean and processable instances in them and, the technique of knowledge discovery and data mining was able to be applied for these information systems by using different algorithm approaches.In the studies, clustering algorithms from data mining techniques have been implemented with different approaches and firstly, these algorithms have been used to analysis laboratory data sets which necessary permissions have been obtained to use. Secondly, head and neck cancer instances, which necessary permissions have been obtained to use, too, have been analysed by using clustering algorithms with different approaches. Lastly, the data set of nutrition and diets is optimized by hybrid quantum genetic algorithm.Improved clustering algorithms have been compared with self-organizing map, k-means++ algorithms and its different approaches. Moreover, improved hybrid quantum genetic algorithm has been compared with traditional genetic algorithm and quantum genetic algorithm. As a result, the patterns, which have higher accuracy and performance than the traditional approaches, have been obtained. 151
- Published
- 2015
6. Outlier detection with K nearest neighbor clustering
- Author
-
Doğan, Yunus, Dalkılıç, Gökhan, and Bilgisayar Mühendisliği Ana Bilim Dalı
- Subjects
Outliers ,Wireless networks ,Classification ,Data mining ,Computer Engineering and Computer Science and Control ,Clustering ,Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol - Abstract
Kablosuz ağ servisi yapan bir sunucu güçlü güvenlik sistemlerine ihtiyaç duymaktadır. Bu amaç için, ağ güvenliğine, aykırı durum tespiti, kümeleme ve sınıflandırma gibi veri madenciliği paradigmaları kullanılarak yeni bir perspektif kazandırılır. Bu çalışma hem ilk aşamadaki kümeleme hem de sonrasındaki sınıflandırma için en yakın k komşu algoritmasını kullanır. En yakın k komşu algoritması kümeleme için kullanıcı profillerini anlamlaştıran veri ambarına ihtiyaç duyar. Bu nedenle, sunucudan istekte bulunulduğu zaman aralıkları ve doküman madenciliğinden geçmiş, istek IP adresleri kullanılacaktır. Ağdaki kullanıcılar, yeni bir yaklaşımla, en yakın k komşu algoritmasının k ve eşik değer parametrelerinin uygun değerlerinin hesaplanması ile kümelenir. Sonuç olarak, oluşan bu kümeler üzerinden, öncelikli ağırlık değerleri farklı olan, farklı eşik değerlerle ve öncelikli ağırlık değerleri farklı olan ortalama benzerliklerle, yeni isteklerin bir aykırı durummu yoksa normal mi oldukları ayırt edilebilecektir. A server which serves wireless network needs strong security systems. For this aim, a new perspective to network security is won by using data mining paradigms like outlier detection, clustering and classification. This study uses k-Nearest Neighbor algorithm for both firstly clustering and then classification. K- NearestNeighbor algorithm needs data warehouse which impersonates user profiles to cluster. Therefore, requested time intervals and requested IPs with text mining are used for user profiles. Users in the network are clustered by calculating optimum k and threshold parameters of k-Nearest Neighbor algorithm with a new approach. Finally, over these clusters, new requests are separated as outlier or normal bydifferent threshold values with different priority weight values and average similarities with different priority weight values. 80
- Published
- 2009
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.