1. Clustering dependence on Lyα luminosity from MUSE surveys at 3 < z < 6.
- Author
-
Herrero Alonso, Y., Miyaji, T., Wisotzki, L., Krumpe, M., Matthee, J., Schaye, J., Aceves, H., Kusakabe, H., and Urrutia, T.
- Subjects
REDSHIFT ,LUMINOSITY ,STELLAR luminosity function ,DARK matter ,LARGE scale structure (Astronomy) - Abstract
We investigate the dependence of Lyα emitter (LAE) clustering on Lyα luminosity and connect the clustering properties of ≈L
⋆ LAEs with those of much fainter ones, namely, ≈0.04L⋆ . We use 1030 LAEs from the MUSE-Wide survey, 679 LAEs from MUSE-Deep, and 367 LAEs from the to-date deepest ever spectroscopic survey, the MUSE Extremely Deep Field. All objects have spectroscopic redshifts of 3 < z < 6 and cover a large dynamic range of Lyα luminosities: 40.15 < log(LLyα /erg s−1 ) < 43.35. We apply the Adelberger et al. K-estimator as the clustering statistic and fit the measurements with state-of-the-art halo occupation distribution (HOD) models. We find that the large-scale bias factor increases weakly with an increasing line luminosity. For the low-luminosity (log⟨LLyα /[erg s−1 ]⟩ = 41.22) and intermediate-luminosity (log⟨LLyα /[erg s−1 ]⟩ = 41.64) LAEs, we compute consistent bias factors blow = 2.43−0.15 +0.15 b low = 2. 43 − 0.15 + 0.15 $ b_\mathrm{{low}}=2.43^{+0.15}_{-0.15} $ and binterm. = 2.42−0.09 +0.10 b interm. = 2. 42 − 0.09 + 0.10 $ b_\mathrm{{interm.}}=2.42^{+0.10}_{-0.09} $ , whereas for the high-luminosity (log⟨LLyα /[erg s−1 ]⟩ = 42.34) LAEs we calculated bhigh = 2.65−0.11 +0.13 b high = 2. 65 − 0.11 + 0.13 $ b_\mathrm{{high}}=2.65^{+0.13}_{-0.11} $. Consequently, high-luminosity LAEs occupy dark matter halos (DMHs) with typical masses of log(Mh /[h−1 M⊙ ]) = 11.09−0.09 +0.10 log (M h / [ h − 1 M ⊙ ]) = 11. 09 − 0.09 + 0.10 $ \log (M_{\mathrm{h}}/[h^{-1}M_\odot])=11.09^{+0.10}_{-0.09} $ , while low-luminosity LAEs reside in halos of log(Mh /[h−1 M⊙ ]) = 10.77−0.15 +0.13 log (M h / [ h − 1 M ⊙ ]) = 10. 77 − 0.15 + 0.13 $ \log (M_{\mathrm{h}}/[h^{-1}M_\odot])=10.77^{+0.13}_{-0.15} $. The minimum masses to host one central LAE, Mmin , and (on average) one satellite LAE, M1 , also vary with Lyα luminosity, growing from log(Mmin /[h−1 M⊙ ]) = 10.3−0.3 +0.2 log (M min / [ h − 1 M ⊙ ]) = 10. 3 − 0.3 + 0.2 $ \log (M_\mathrm{{min}}/[h^{-1}M_\odot])=10.3^{+0.2}_{-0.3} $ and log(M1 /[h−1 M⊙ ]) = 11.7−0.2 +0.3 log (M 1 / [ h − 1 M ⊙ ]) = 11. 7 − 0.2 + 0.3 $ \log (M_1/[h^{-1}M_\odot])=11.7^{+0.3}_{-0.2} $ to log(Mmin /[h−1 M⊙ ]) = 10.7−0.3 +0.2 log (M min / [ h − 1 M ⊙ ]) = 10. 7 − 0.3 + 0.2 $ \log (M_\mathrm{{min}}/[h^{-1}M_\odot])=10.7^{+0.2}_{-0.3} $ and log(M1 /[h−1 M⊙ ]) = 12.4−0.6 +0.4 log (M 1 / [ h − 1 M ⊙ ]) = 12. 4 − 0.6 + 0.4 $ \log (M_1/[h^{-1}M_\odot])=12.4^{+0.4}_{-0.6} $ from low- to high-luminosity samples, respectively. The satellite fractions are ≲10% (≲20%) at 1σ (3σ) confidence level, supporting a scenario in which DMHs typically host one single LAE. We next bisected the three main samples into disjoint subsets to thoroughly explore the dependence of the clustering properties on LLyα . We report a strong (8σ) clustering dependence on Lyα luminosity, not accounting for cosmic variance effects, where the highest luminosity LAE subsample (log(LLyα /erg s−1 ) ≈ 42.53) clusters more strongly (bhighest = 3.13−0.15 +0.08 b highest = 3. 13 − 0.15 + 0.08 $ b_\mathrm{{highest}}=3.13^{+0.08}_{-0.15} $) and resides in more massive DMHs (log(Mh /[h−1 M⊙ ] )= 11.43−0.10 +0.04 log (M h / [ h − 1 M ⊙ ]) = 11. 43 − 0.10 + 0.04 $ \log(M_\mathrm{{h}} / [h^{-1}{M}_{\odot}])=11.43^{+0.04}_{-0.10} $) than the lowest luminosity one (log(LLyα /erg s−1 ) ≈ 40.97), which presents a bias of blowest = 1.79−0.06 +0.08 b lowest = 1. 79 − 0.06 + 0.08 $ b_\mathrm{{lowest}}=1.79^{+0.08}_{-0.06} $ and occupies log(Mh /[h−1 M⊙ ]) = 10.00−0.09 +0.12 log (M h / [ h − 1 M ⊙ ]) = 10. 00 − 0.09 + 0.12 $ \log(M_\mathrm{{h}} / [h^{-1}{M}_{\odot}])=10.00^{+0.12}_{-0.09} $ halos. We discuss the implications of these results for evolving Lyα luminosity functions, halo mass dependent Lyα escape fractions, and incomplete reionization signatures. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF