1. Combination therapy with cystic fibrosis transmembrane conductance regulator modulators augment the airway functional microanatomy.
- Author
-
Birket SE, Chu KK, Houser GH, Liu L, Fernandez CM, Solomon GM, Lin V, Shastry S, Mazur M, Sloane PA, Hanes J, Grizzle WE, Sorscher EJ, Tearney GJ, and Rowe SM
- Subjects
- Amiloride pharmacology, Animals, Cells, Cultured, Colforsin pharmacology, Cystic Fibrosis genetics, Cystic Fibrosis metabolism, Cystic Fibrosis Transmembrane Conductance Regulator genetics, Drug Evaluation, Preclinical, Drug Therapy, Combination, Humans, Membrane Potentials, Mice, Mutation, Missense, NIH 3T3 Cells, Aminophenols pharmacology, Chloride Channel Agonists pharmacology, Cystic Fibrosis drug therapy, Cystic Fibrosis Transmembrane Conductance Regulator metabolism, Quinolones pharmacology
- Abstract
Recently approved therapies that modulate CFTR function have shown significant clinical benefit, but recent investigations regarding their molecular mechanism when used in combination have not been consistent with clinical results. We employed micro-optical coherence tomography as a novel means to assess the mechanism of action of CFTR modulators, focusing on the effects on mucociliary clearance. Primary human airway monolayers from patients with a G551D mutation responded to ivacaftor treatment with increased ion transport, airway surface liquid depth, ciliary beat frequency, and mucociliary transport rate, in addition to decreased effective viscosity of the mucus layer, a unique mechanism established by our findings. These endpoints are consistent with the benefit observed in G551D patients treated with ivacaftor, and identify a novel mechanism involving mucus viscosity. In monolayers derived from F508del patients, the situation is more complicated, compounded by disparate effects on CFTR expression and function. However, by combining ion transport measurements with functional imaging, we establish a crucial link between in vitro data and clinical benefit, a finding not explained by ion transport studies alone. We establish that F508del cells exhibit increased mucociliary transport and decreased mucus effective viscosity, but only when ivacaftor is added to the regimen. We further show that improvement in the functional microanatomy in vitro corresponds with lung function benefit observed in the clinical trials, whereas ion transport in vitro corresponds to changes in sweat chloride. Functional imaging reveals insights into clinical efficacy and CFTR biology that significantly impact our understanding of novel therapies., (Copyright © 2016 the American Physiological Society.)
- Published
- 2016
- Full Text
- View/download PDF