1. Numerical modeling of Czochralski growth of Li2MoO4 crystals for heat-scintillation cryogenic bolometers
- Author
-
Philippe Veber, Jean-Baptiste Sand, Abdelmounaim Ahmine, Matias Velázquez, Gabriel Buse, T. Duffar, H. Cabane, Carmen Stelian, Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Lumière Matière [Villeurbanne] (ILM), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, CristalInnov, ANR agency (n° ANR-16-CE08-0018-01) is acknowledged for funding the CLYMENE project., and ANR-16-CE08-0018,CLYMENE,Croissance Czochralski de cristaux massifs Li2MoO4 pour les bolomètres scintillants utilisés en détection des évènements rares(2016)
- Subjects
Convection ,Lithium molybdate ,Induction heating ,Materials science ,02 engineering and technology ,Czochralski method ,01 natural sciences ,law.invention ,Inorganic Chemistry ,Crystal ,chemistry.chemical_compound ,law ,0103 physical sciences ,Materials Chemistry ,Crystallization ,010302 applied physics ,Scintillation ,business.industry ,Bolometer ,Lithium compounds ,Oxides ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Computer simulation ,Scintillator materials ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,chemistry ,Heat transfer ,Optoelectronics ,0210 nano-technology ,business - Abstract
International audience; Lithium molybdate Li2MoO4 (LMO) crystals of mass ranging between 350 and 500 g are excellent candidates to build heat-scintillation cryogenic bolometers likely to be used for the detection of rare events in astroparticle physics. In this work, numerical modeling is applied in order to investigate the Czochralski growth of Li2MoO4 crystals in an inductive furnace. The numerical model was validated by comparing the numerical predictions of the crystal-melt interface shape to experimental visualization of the growth interface. Modeling was performed for two different Czochralski furnaces that use inductive heating. The simulation of the first furnace, which was used to grow Li2MoO4 crystals of 3–4 cm in diameter, reveals non-optimal heat transfer conditions for obtaining good quality crystals. The second furnace, which will be used to grow crystals of 5 cm in diameter, was numerically optimized in order to reduce the temperature gradients in the crystal and to avoid fast crystallization of the bath at the later stages of the growth process.
- Published
- 2018
- Full Text
- View/download PDF