1. Immunological correlates of protection mediated by a whole organism, Cryptococcus neoformans , vaccine deficient in chitosan.
- Author
-
Specht CA, Wang R, Oliveira LVN, Hester MM, Gomez C, Mou Z, Carlson D, Lee CK, Hole CR, Lam WC, Upadhya R, Lodge JK, and Levitz SM
- Subjects
- Animals, Mice, CD8-Positive T-Lymphocytes immunology, Mice, Inbred C57BL, Interferon-gamma immunology, Interferon-gamma metabolism, Female, Cryptococcus neoformans immunology, Cryptococcus neoformans genetics, Cryptococcosis immunology, Cryptococcosis prevention & control, Cryptococcosis microbiology, Fungal Vaccines immunology, Fungal Vaccines administration & dosage, Fungal Vaccines genetics, Chitosan immunology, CD4-Positive T-Lymphocytes immunology
- Abstract
The global burden of infections due to the pathogenic fungus Cryptococcus is substantial in persons with low CD4
+ T-cell counts. Previously, we deleted three chitin deacetylase genes from Cryptococcus neoformans to create a chitosan-deficient, avirulent strain, designated as cda1∆2∆3∆ , which, when used as a vaccine, protected mice from challenge with virulent C. neoformans strain KN99. Here, we explored the immunological basis for protection. Vaccine-mediated protection was maintained in mice lacking B cells or CD8+ T cells. In contrast, protection was lost in mice lacking α/β T cells or CD4+ T cells. Moreover, CD4+ T cells from vaccinated mice conferred protection upon adoptive transfer to naive mice. Importantly, while monoclonal antibody-mediated depletion of CD4+ T cells just prior to vaccination resulted in complete loss of protection, significant protection was retained in mice depleted of CD4+ T cells after vaccination but prior to challenge. Vaccine-mediated protection was lost in mice genetically deficient in interferon-γ (IFNγ), tumor necrosis factor alpha (TNFα), or interleukin (IL)-23p19. A robust influx of leukocytes and IFNγ- and TNFα-expressing CD4+ T cells was seen in the lungs of vaccinated and challenged mice. Finally, a higher level of IFNγ production by lung cells stimulated ex vivo correlated with lower fungal burden in the lungs. Thus, while B cells and CD8+ T cells are dispensable, IFNγ and CD4+ T cells have overlapping roles in generating protective immunity prior to cda1∆2∆3∆ vaccination. However, once vaccinated, protection becomes less dependent on CD4+ T cells, suggesting a strategy for vaccinating HIV+ persons prior to loss of CD4+ T cells., Importance: The fungus Cryptococcus neoformans is responsible for >100,000 deaths annually, mostly in persons with impaired CD4+ T-cell function such as AIDS. There are no approved human vaccines. We previously created a genetically engineered avirulent strain of C. neoformans , designated as cda1∆2∆3∆ . When used as a vaccine, cda1∆2∆3∆ protects mice against a subsequent challenge with a virulent C. neoformans strain. Here, we defined components of the immune system responsible for vaccine-mediated protection. We found that while B cells and CD8+ T cells were dispensible, protection was lost in mice genetically deficient in CD4+ T cells and the cytokines IFNγ, TNFα, or IL-23. A robust influx of cytokine-producing CD4+ T cells was seen in the lungs of vaccinated mice following infection. Importantly, protection was retained in mice depleted of CD4+ T cells following vaccination, suggesting a strategy to protect persons who are at risk of future CD4+ T-cell dysfunction., Competing Interests: The authors declare no conflict of interest.- Published
- 2024
- Full Text
- View/download PDF