1. SAFB2 enables the processing of suboptimal stem-loop structures in clustered primary miRNA transcripts
- Author
-
Almina Jukic, Katharina Hutter, Alexander Huettenhofer, Andreas Villunger, Felix Eichin, Verena Labi, Michael Lohmueller, Simon M. Hoser, Sebastian Herzog, and Seymen Avci
- Subjects
Microprocessor complex ,biology ,DGCR8 ,Cas9 ,microRNA ,biology.protein ,CRISPR ,RNA ,Computational biology ,Stem-loop ,Drosha - Abstract
SummaryMicroRNAs (miRNAs) are small noncoding RNAs that post-transcriptionally silence most protein-coding genes in mammals. They are generated from primary transcripts containing single or multiple clustered stem-loop structures that are thought to be recognized and cleaved by the DGCR8/DROSHA Microprocessor complex as independent units. Contrasting this view, we here report an unexpected mode of processing of a bicistronic cluster of the miR-15 family, miR-15a-16-1. We find that the primary miR-15a stem-loop is a poor Microprocessor substrate and is consequently not processed on its own, but that the presence of the neighboring primary miR-16-1 stem-loop on the same transcript can compensate for this deficiency in cis. Using a CRISPR/Cas9 screen, we identify SAFB2 (scaffold attachment factor B2) as an essential co-factor in this miR-16-1-assisted pri-miR-15 cleavage, and describe SAFB2 as a novel accessory protein of DROSHA. Notably, SAFB2-mediated cluster assistance expands to other clustered pri-miRNAs including miR-15b, miR-92a and miR-181b, indicating a general mechanism. Together, our study reveals an unrecognized function of SAFB2 in miRNA processing and suggests a scenario in which SAFB2 enables the binding and processing of suboptimal DGCR8/DROSHA substrates in clustered primary miRNA transcripts.Highlightsthe primary miR-15a stem-loop structure per se is a poor Microprocessor substratecleavage of pri-miR-15a requires the processing of an additional miRNA stem-loop on the same RNAsequential pri-miRNA processing or “cluster assistance” is mediated by SAFB proteinsSAFB2 associates with the Microprocessor
- Published
- 2019
- Full Text
- View/download PDF