51. Credit Scoring for Peer-to-Peer Lending.
- Author
-
Ahelegbey, Daniel Felix and Giudici, Paolo
- Subjects
CREDIT ratings ,PEER-to-peer lending ,SINGULAR value decomposition ,FINANCIAL ratios ,FINANCIAL performance - Abstract
This paper shows how to improve the measurement of credit scoring by means of factor clustering. The improved measurement applies, in particular, to small and medium enterprises (SMEs) involved in P2P lending. The approach explores the concept of familiarity which relies on the notion that the more familiar/similar things are, the closer they are in terms of functionality or hidden characteristics (latent factors that drive the observed data). The approach uses singular value decomposition to extract the factors underlying the observed financial performance ratios of SMEs. We then cluster the factors using the standard k-mean algorithm. This enables us to segment the heterogeneous population into clusters with more homogeneous characteristics. The result shows that clusters with relatively fewer number of SMEs produce a more parsimonious and interpretable credit scoring model with better default predictive performance. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF