4 results on '"McMurray CL"'
Search Results
2. Prospective Surveillance of Respiratory Infections in British Antarctic Survey Bases During the COVID-19 Pandemic.
- Author
-
Ganly KH, Bowyer JC, Bird PW, Willford NJ, Shaw J, Odedra M, Osborn G, Everett T, Warner M, Horne S, Dinn M, McMurray CL, Holmes CW, Koo SSF, and Tang JW
- Subjects
- Humans, Pandemics, SARS-CoV-2, Prospective Studies, Antarctic Regions, Surveys and Questionnaires, COVID-19 epidemiology, Respiratory Tract Infections, Viruses, Adenoviridae Infections, Paramyxoviridae Infections epidemiology
- Abstract
Background: The British Antarctic bases offer a semiclosed environment for assessing the transmission and persistence of seasonal respiratory viruses., Methods: Weekly swabbing was performed for respiratory pathogen surveillance (including SARS-CoV-2), at 2 British Antarctic Survey bases, during 2020: King Edward Point (KEP, 30 June to 29 September, 9 participants, 124 swabs) and Rothera (9 May to 6 June, 27 participants, 127 swabs). Symptom questionnaires were collected for any newly symptomatic cases that presented during this weekly swabbing period., Results: At KEP, swabs tested positive for non-SARS-CoV-2 seasonal coronavirus (2), adenovirus (1), parainfluenza 3 (1), and respiratory syncytial virus B (1). At Rothera, swabs tested positive for non-SARS-CoV-2 seasonal coronavirus (3), adenovirus (2), parainfluenza 4 (1), and human metapneumovirus (1). All bacterial agents identified were considered to be colonizers and not pathogenic., Conclusions: At KEP, the timeline indicated that the parainfluenza 3 and adenovirus infections could have been linked to some of the symptomatic cases that presented. For the other viruses, the only other possible sources were the visiting ship crew members. At Rothera, the single symptomatic case presented too early for this to be linked to the subsequent viral detections, and the only other possible source could have been a single nonparticipating staff member., Competing Interests: Potential conflicts of interest. The authors: No reported conflicts of interest. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed., (© The Author(s) 2022. Published by Oxford University Press on behalf of Infectious Diseases Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2022
- Full Text
- View/download PDF
3. Performing under Pressure: Insights into the Diagnostic Testing Burden at a UK National Health Service Clinical Virology Laboratory during the SARS-CoV-2 Pandemic.
- Author
-
Bird PW, Taylor G, Cafferata J, Gardener J, McMurray CL, Fletcher O, Toovey OTR, Holmes CW, and Tang JW
- Subjects
- Humans, SARS-CoV-2, State Medicine, COVID-19 Testing, Laboratories, Clinical Laboratory Techniques, United Kingdom epidemiology, Pandemics, COVID-19 diagnosis, COVID-19 epidemiology
- Abstract
UK National Health Service (NHS) Clinical Virology Departments provide a repertoire of tests on clinical samples to detect the presence of viral genomic material or host immune responses to viral infection. In December 2019, a novel coronavirus (SARS-CoV-2) emerged which quickly developed into a global pandemic; NHS laboratories responded rapidly to upscale their testing capabilities. To date, there is little information on the impact of increased SARS-CoV-2 screening on non-SARS-CoV-2 testing within NHS laboratories. This report details the virology test requests received by the Leicester-based NHS Virology laboratory from January 2018 to May 2022. Data show that in spite of a dramatic increase in screening, along with multiple logistic and staffing issues, the Leicester Virology Department was mostly able to maintain the same level of service for non-respiratory virus testing while meeting the new increase in SARS-CoV-2 testing.
- Published
- 2022
- Full Text
- View/download PDF
4. SARS-CoV-2 lineage dynamics in England from September to November 2021: high diversity of Delta sub-lineages and increased transmissibility of AY.4.2
- Author
-
Eales, O, Page, AJ, de Oliveira Martins, L, Wang, H, Bodinier, B, Haw, D, Jonnerby, J, Atchison, C, Robson, SC, Connor, TR, Loman, NJ, Golubchik, T, Nunez, RTM, Bonsall, D, Rambaut, A, Snell, LB, Livett, R, Ludden, C, Corden, S, Nastouli, E, Nebbia, G, Johnston, I, Lythgoe, K, Torok, ME, Goodfellow, IG, Prieto, JA, Saeed, K, Jackson, DK, Houlihan, C, Frampton, D, Hamilton, WL, Witney, AA, Bucca, G, Pope, CF, Moore, C, Thomson, EC, Harrison, EM, Smith, CP, Rogan, F, Beckwith, SM, Murray, A, Singleton, D, Eastick, K, Sheridan, LA, Randell, P, Jackson, LM, Ariani, CV, Gonçalves, S, Fairley, DJ, Loose, MW, Watkins, J, Moses, S, Nicholls, S, Bull, M, Amato, R, Smith, DL, Aanensen, DM, Barrett, JC, Aggarwal, D, Shepherd, JG, Curran, MD, Parmar, S, Parker, MD, Williams, C, Glaysher, S, Underwood, AP, Bashton, M, Pacchiarini, N, Loveson, KF, Byott, M, Carabelli, AM, Templeton, KE, de Silva, TI, Wang, D, Langford, CF, Sillitoe, J, Gunson, RN, Cottrell, S, O’Grady, J, Kwiatkowski, D, Lillie, PJ, Cortes, N, Moore, N, Thomas, C, Burns, PJ, Mahungu, TW, Liggett, S, Beckett, AH, Holden, MTG, Levett, LJ, Osman, H, Hassan-Ibrahim, MO, Simpson, DA, Chand, M, Gupta, RK, Darby, AC, Paterson, S, Pybus, OG, Volz, EM, de Angelis, D, Robertson, DL, Martincorena, I, Aigrain, L, Bassett, AR, Wong, N, Taha, Y, Erkiert, MJ, Chapman, MHS, Dewar, R, McHugh, MP, Mookerjee, S, Aplin, S, Harvey, M, Sass, T, Umpleby, H, Wheeler, H, McKenna, JP, Warne, B, Taylor, JF, Chaudhry, Y, Izuagbe, R, Jahun, AS, Young, GR, McMurray, C, McCann, CM, Nelson, A, Elliott, S, Lowe, H, Price, A, Crown, MR, Rey, S, Roy, S, Temperton, B, Shaaban, S, Hesketh, AR, Laing, KG, Monahan, IM, Heaney, J, Pelosi, E, Silviera, S, Wilson-Davies, E, Fryer, H, Adams, H, du Plessis, L, Johnson, R, Harvey, WT, Hughes, J, Orton, RJ, Spurgin, LG, Bourgeois, Y, Ruis, C, O’Toole, Á, Gourtovaia, M, Sanderson, T, Fraser, C, Edgeworth, J, Breuer, J, Michell, SL, Todd, JA, John, M, Buck, D, Gajee, K, Kay, GL, Peacock, SJ, Heyburn, D, Kitchman, K, McNally, A, Pritchard, DT, Dervisevic, S, Muir, P, Robinson, E, Vipond, BB, Ramadan, NA, Jeanes, C, Weldon, D, Catalan, J, Jones, N, da Silva Filipe, A, Fuchs, M, Miskelly, J, Jeffries, AR, Oliver, K, Park, NR, Ash, A, Koshy, C, Barrow, M, Buchan, SL, Mantzouratou, A, Clark, G, Holmes, CW, Campbell, S, Davis, T, Tan, NK, Brown, JR, Harris, KA, Kidd, SP, Grant, PR, Xu-McCrae, L, Cox, A, Madona, P, Pond, M, Randell, PA, Withell, KT, Graham, C, Denton-Smith, R, Swindells, E, Turnbull, R, Sloan, TJ, Bosworth, A, Hutchings, S, Pymont, HM, Casey, A, Ratcliffe, L, Jones, CR, Knight, BA, Haque, T, Hart, J, Irish-Tavares, D, Witele, E, Mower, C, Watson, LK, Collins, J, Eltringham, G, Crudgington, D, Macklin, B, Iturriza-Gomara, M, Lucaci, AO, McClure, PC, Carlile, M, Holmes, N, Storey, N, Rooke, S, Yebra, G, Craine, N, Perry, M, Alikhan, N - F, Bridgett, S, Cook, KF, Fearn, C, Goudarzi, S, Lyons, RA, Williams, T, Haldenby, ST, Durham, J, Leonard, S, Davies, RM, Batra, R, Blane, B, Spyer, MJ, Smith, P, Yavus, M, Williams, RJ, Mahanama, AIK, Samaraweera, B, Girgis, ST, Hansford, SE, Green, A, Beaver, C, Bellis, KL, Dorman, MJ, Kay, S, Prestwood, L, Rajatileka, S, Quick, J, Poplawski, R, Reynolds, N, Mack, A, Morriss, A, Whalley, T, Patel, B, Georgana, I, Hosmillo, M, Pinckert, ML, Stockton, J, Henderson, JH, Hollis, A, Stanley, W, Yew, WC, Myers, R, Thornton, A, Adams, A, Annett, T, Asad, H, Birchley, A, Coombes, J, Evans, JM, Fina, L, Gatica-Wilcox, B, Gilbert, L, Graham, L, Hey, J, Hilvers, E, Jones, S, Jones, H, Kumziene-Summerhayes, S, McKerr, C, Powell, J, Pugh, G, Taylor, S, Trotter, AJ, Williams, CA, Kermack, LM, Foulkes, BH, Gallis, M, Hornsby, HR, Louka, SF, Pohare, M, Wolverson, P, Zhang, P, MacIntyre-Cockett, G, Trebes, A, Moll, RJ, Ferguson, L, Goldstein, EJ, Maclean, A, Tomb, R, Starinskij, I, Thomson, L, Southgate, J, Kraemer, MUG, Raghwani, J, Zarebski, AE, Boyd, O, Geidelberg, L, Illingworth, CJ, Jackson, C, Pascall, D, Vattipally, S, Freeman, TM, Hsu, SN, Lindsey, BB, James, K, Lewis, K, Tonkin-Hill, G, Tovar-Corona, JM, Cox, MG, Abudahab, K, Menegazzo, M, MEng, BEWT, Yeats, CA, Mukaddas, A, Wright, DW, Colquhoun, R, Hill, V, Jackson, B, McCrone, JT, Medd, N, Scher, E, Keatley, J - P, Curran, T, Morgan, S, Maxwell, P, Smith, K, Eldirdiri, S, Kenyon, A, Holmes, AH, Price, JR, Wyatt, T, Mather, AE, Skvortsov, T, Hartley, JA, Guest, M, Kitchen, C, Merrick, I, Munn, R, Bertolusso, B, Lynch, J, Vernet, G, Kirk, S, Wastnedge, E, Stanley, R, Idle, G, Bradley, DT, Poyner, J, Mori, M, Jones, O, Wright, V, Brooks, E, Churcher, CM, Fragakis, M, Galai, K, Jermy, A, Judges, S, McManus, GM, Smith, KS, Westwick, E, Attwood, SW, Bolt, F, Davies, A, De Lacy, E, Downing, F, Edwards, S, Meadows, L, Jeremiah, S, Smith, N, Foulser, L, Charalampous, T, Patel, A, Berry, L, Boswell, T, Fleming, VM, Howson-Wells, HC, Joseph, A, Khakh, M, Lister, MM, Bird, PW, Fallon, K, Helmer, T, McMurray, CL, Odedra, M, Shaw, J, Tang, JW, Willford, NJ, Blakey, V, Raviprakash, V, Sheriff, N, Williams, L - A, Feltwell, T, Bedford, L, Cargill, JS, Hughes, W, Moore, J, Stonehouse, S, Atkinson, L, Lee, JCD, Shah, D, Alcolea-Medina, A, Ohemeng-Kumi, N, Ramble, J, Sehmi, J, Williams, R, Chatterton, W, Pusok, M, Everson, W, Castigador, A, Macnaughton, E, Bouzidi, KE, Lampejo, T, Sudhanva, M, Breen, C, Sluga, G, Ahmad, SSY, George, RP, Machin, NW, Binns, D, James, V, Blacow, R, Coupland, L, Smith, L, Barton, E, Padgett, D, Scott, G, Cross, A, Mirfenderesky, M, Greenaway, J, Cole, K, Clarke, P, Duckworth, N, Walsh, S, Bicknell, K, Impey, R, Wyllie, S, Hopes, R, Bishop, C, Chalker, V, Harrison, I, Gifford, L, Molnar, Z, Auckland, C, Evans, C, Johnson, K, Partridge, DG, Raza, M, Baker, P, Bonner, S, Essex, S, Murray, LJ, Lawton, AI, Burton-Fanning, S, Payne, BAI, Waugh, S, Gomes, AN, Kimuli, M, Murray, DR, Ashfield, P, Dobie, D, Ashford, F, Best, A, Crawford, L, Cumley, N, Mayhew, M, Megram, O, Mirza, J, Moles-Garcia, E, Percival, B, Driscoll, M, Ensell, L, Lowe, HL, Maftei, L, Mondani, M, Chaloner, NJ, Cogger, BJ, Easton, LJ, Huckson, H, Lewis, J, Lowdon, S, Malone, CS, Munemo, F, Mutingwende, M, Nicodemi, R, Podplomyk, O, Somassa, T, Beggs, A, Richter, A, Cormie, C, Dias, J, Forrest, S, Higginson, EE, Maes, M, Young, J, Davidson, RK, Jackson, KA, Turtle, L, Keeley, AJ, Ball, J, Byaruhanga, T, Chappell, JG, Dey, J, Hill, JD, Park, EJ, Fanaie, A, Hilson, RA, Yaze, G, Lo, S, Afifi, S, Beer, R, Maksimovic, J, McCluggage, K, Spellman, K, Bresner, C, Fuller, W, Marchbank, A, Workman, T, Shelest, E, Debebe, J, Sang, F, Zamudio, ME, Francois, S, Gutierrez, B, Vasylyeva, TI, Flaviani, F, Ragonnet-Cronin, M, Smollett, KL, Broos, A, Mair, D, Nichols, J, Nomikou, K, Tong, L, Tsatsani, I, O’Brien, PS, Rushton, S, Sanderson, R, Perkins, J, Cotton, S, Gallagher, A, Allara, E, Pearson, C, Bibby, D, Dabrera, G, Ellaby, N, Gallagher, E, Hubb, J, Lackenby, A, Lee, D, Manesis, N, Mbisa, T, Platt, S, Twohig, KA, Morgan, M, Aydin, A, Baker, DJ, Foster-Nyarko, E, Prosolek, SJ, Rudder, S, Baxter, C, Carvalho, SF, Lavin, D, Mariappan, A, Radulescu, C, Singh, A, Tang, M, Morcrette, H, Bayzid, N, Cotic, M, Balcazar, CE, Gallagher, MD, Maloney, D, Stanton, TD, Williamson, KA, Manley, R, Michelsen, ML, Sambles, CM, Studholme, DJ, Warwick-Dugdale, J, Eccles, R, Gemmell, M, Gregory, R, Hughes, M, Nelson, C, Rainbow, L, Vamos, EE, Webster, HJ, Whitehead, M, Wierzbicki, C, Angyal, A, Green, LR, Whiteley, M, Betteridge, E, Bronner, IF, Farr, BW, Goodwin, S, Lensing, SV, McCarthy, SA, Quail, MA, Rajan, D, Redshaw, NM, Scott, C, Shirley, L, Thurston, SAJ, Rowe, W, Gaskin, A, Le-Viet, T, Bonfield, J, Liddle, J, Whitwham, A, Ashby, D, Barclay, W, Taylor, G, Cooke, G, Ward, H, Darzi, A, Riley, S, Chadeau-Hyam, M, Donnelly, CA, Elliott, P, The COVID-19 Genomics UK (COG-UK) Consortium, Department of Health, Imperial College Healthcare NHS Trust- BRC Funding, Medical Research Council (MRC), Cancer Research UK, Commission of the European Communities, Wellcome Trust, National Institute for Health Research, and Imperial College Healthcare NHS Trust: Research Capability Funding (RCF)
- Subjects
Delta variant ,Science & Technology ,SARS-CoV-2 ,COVID-19 ,1103 Clinical Sciences ,C500 ,Microbiology ,Genetic diversity ,B900 ,Infectious Diseases ,England ,COVID-19 Genomics UK (COG-UK) Consortium ,1108 Medical Microbiology ,Mutation ,Humans ,Transmission advantage ,Life Sciences & Biomedicine ,Phylogeny ,0605 Microbiology - Abstract
Background Since the emergence of SARS-CoV-2, evolutionary pressure has driven large increases in the transmissibility of the virus. However, with increasing levels of immunity through vaccination and natural infection the evolutionary pressure will switch towards immune escape. Genomic surveillance in regions of high immunity is crucial in detecting emerging variants that can more successfully navigate the immune landscape. Methods We present phylogenetic relationships and lineage dynamics within England (a country with high levels of immunity), as inferred from a random community sample of individuals who provided a self-administered throat and nose swab for rt-PCR testing as part of the REal-time Assessment of Community Transmission-1 (REACT-1) study. During round 14 (9 September–27 September 2021) and 15 (19 October–5 November 2021) lineages were determined for 1322 positive individuals, with 27.1% of those which reported their symptom status reporting no symptoms in the previous month. Results We identified 44 unique lineages, all of which were Delta or Delta sub-lineages, and found a reduction in their mutation rate over the study period. The proportion of the Delta sub-lineage AY.4.2 was increasing, with a reproduction number 15% (95% CI 8–23%) greater than the most prevalent lineage, AY.4. Further, AY.4.2 was less associated with the most predictive COVID-19 symptoms (p = 0.029) and had a reduced mutation rate (p = 0.050). Both AY.4.2 and AY.4 were found to be geographically clustered in September but this was no longer the case by late October/early November, with only the lineage AY.6 exhibiting clustering towards the South of England. Conclusions As SARS-CoV-2 moves towards endemicity and new variants emerge, genomic data obtained from random community samples can augment routine surveillance data without the potential biases introduced due to higher sampling rates of symptomatic individuals.
- Published
- 2022
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.