1. Interplay of Exciton Coupling and Large-Amplitude Motions in the Vibrational Circular Dichroism Spectrum of Dehydroquinidine.
- Author
-
Nicu, Valentin P., Domingos, Sérgio R., Strudwick, Benjamin H., Brouwer, Albert M., and Buma, Wybren J.
- Subjects
- *
EXCITON theory , *CIRCULAR dichroism , *QUINIDINE , *BOLTZMANN factor , *COUPLING reactions (Chemistry) - Abstract
A detailed analysis of the computed structure, energies, vibrational absorption (VA) and circular dichroism (VCD) spectra of 30 low-energy conformers of dehydroquinidine reveals the existence of families of pseudo-conformers, the structures of which differ mostly in the orientation of a single OH bond. The pseudo-conformers in a family are separated by very small energy barriers (i.e., 1.0 kcal mol−1 or smaller) and have very different VCD spectra. First, we demonstrate the unreliable character of the Boltzmann factors predicted with DFT. Then, we show that the large differences observed between the VCD spectra of the pseudo-conformers in a family are caused by large-amplitude motions involving the OH bond, which trigger the appearance/disappearance of strong VCD exciton-coupling bands in the fingerprint region. This interplay between exciton coupling and large-amplitude-motion phenomena demonstrates that when dealing with flexible molecules with polar bonds, vibrational averaging of VCD spectra should not be neglected. In this regard, the dehydroquinidine molecule considered here is expected to be a typical example and not the exception to the rule. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF