1. Solar Radiation Prediction Based on Convolution Neural Network and Long Short-Term Memory
- Author
-
Tingting Zhu, Yiren Guo, Zhenye Li, and Cong Wang
- Subjects
solar radiation ,inter-hour forecast ,Siamese network ,convolution neural network ,long short-term memory ,Technology - Abstract
Photovoltaic power generation is highly valued and has developed rapidly throughout the world. However, the fluctuation of solar irradiance affects the stability of the photovoltaic power system and endangers the safety of the power grid. Therefore, ultra-short-term solar irradiance predictions are widely used to provide decision support for power dispatching systems. Although a great deal of research has been done, there is still room for improvement regarding the prediction accuracy of solar irradiance including global horizontal irradiance, direct normal irradiance and diffuse irradiance. This study took the direct normal irradiance (DNI) as prediction target and proposed a Siamese convolutional neural network-long short-term memory (SCNN-LSTM) model to predict the inter-hour DNI by combining the time-dependent spatial features of total sky images and historical meteorological observations. First, the features of total sky images were automatically extracted using a Siamese CNN to describe the cloud information. Next, the image features and meteorological observations were fused and then predicted the DNI in 10-min ahead using an LSTM. To verify the validity of the proposed SCNN-LSTM model, several experiments were carried out using two-year historical observation data provided by the National Renewable Energy Laboratory (NREL). The results show that the proposed method achieved nRMSE of 23.47% and forecast skill of 24.51% for the whole year of 2014, and it also did better than some published methods especially under clear sky and rainy days.
- Published
- 2021
- Full Text
- View/download PDF