15 results on '"connection matrix"'
Search Results
2. Dynamical spectral sequences for Morse/Novikov and Morse/Bott complexes
- Author
-
Lima, Dahisy Valadão de Souza, 1986, Rezende, Ketty Abaroa de, 1959, Teixeira, Marco Antonio, Manzoli Neto, Oziride, Oliveira, Regilene Delazari dos Santos, Carbinatto, Maria do Carmo, Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Matemática, and UNIVERSIDADE ESTADUAL DE CAMPINAS
- Subjects
Sequências espectrais (Matemática) ,Spectral sequences (Mathematics) ,Morse-Bott functions ,Connection matrix ,Índice de Conley ,Matriz de conexão ,Circle-valued Morse functions ,Funções de Morse circulares ,Funções de Morse-Bott ,Conley index - Abstract
Orientador: Ketty Abaroa de Rezende Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica Resumo: O tema principal desta tese é o estudo de fluxos gradientes associados a campos vetoriais $-\nabla f$ em variedades fechadas, onde $f$ é uma função do tipo Morse, Morse circular e Morse-Bott. Para obter informações dinâmicas em cada caso, utilizamos ferramentas algébricas e topológicas, tais como sequências espectrais e matrizes de conexão. No contexto de Morse, consideramos um complexo de cadeias $(C,\Delta)$ gerado pelos pontos críticos de $f$ onde $\Delta$ conta (com sinal) o número de linhas do fluxo entre dois pontos críticos consecutivos. Uma análise via sequências espectrais $(E^{r},d^{r})$ é feita para se obter resultados de continuação global em superfícies. Nós relacionamos as diferenciais da $r$-ésima página de $(E^{r},d^{r})$ com cancelamentos dinâmicos entre pontos críticos. No caso de função de Morse circular $f:M \rightarrow S^{1}$, o método da varredura para um complexo de Novikov $(\mathcal{N},\Delta)$ associado $f$ e gerado pelos pontos críticos de $f$ é definido sobre o anel $\mathbb{Z}((t))$. Este método produz a cada etapa matrizes de Novikov. Provamos que a matriz final produzida pelo método da varredura tem entradas polinomiais, o que é surpreendente, já que as matrizes intermediárias podem ter séries infinitas como entradas. Apresentamos resultados que mostram que os módulos e diferenciais de uma sequência espectral associada a $(\mathcal{N},\Delta)$ podem ser recuperados através do método da varredura. Para fluxos gradientes associados a funções de Morse-Bott, as singularidades formam variedades críticas. Usamos a teoria do índice de Conley para obter uma caracterização do conjunto de matrizes de conexão para fluxos Morse-Bott. Obtemos resultados sobre o efeito no conjunto de matrizes de conexão causado por mudanças na ordem parcial e na decomposição de Morse de um conjunto invariante isolado Abstract: The main theme in this thesis is the study of gradient flows associated to a vector field $-\nabla f$ on closed manifolds, where $f$ is either a Morse function, a circle-valued Morse function or a Morse-Bott function. In order to obtain dynamical information, we make use of algebraic and topological tools such as spectral sequences and connection matrices. In the Morse context, consider a chain complex $(C,\Delta)$ generated by the critical points of $f$, where $\Delta$ counts the number of flow lines between consecutive critical points with signs. A spectral sequence $(E^{r},d^{r})$ analysis is used to obtain results on global continuation of flows on surfaces. A link is established between the differentials on the $r$-th page of $(E^{r},d^{r})$ and cancellation of critical points. In the circle-valued Morse case $f:M \rightarrow S^{1}$, a sweeping algorithm for the Novikov chain complex $(\mathcal{N},\Delta)$ associated to $f$ and generated by the critical points of $f$ is defined over the ring $\mathbb{Z}((t))$. This algorithm produces at each stage Novikov matrices. We prove that the last Novikov matrix has polynomial entries which is quite surprising since the matrices in the intermediary stages may have infinite series entries. We also present results showing that the modules and differentials of the spectral sequence associated to $(\mathcal{N},\Delta)$ can be retrieved through the sweeping algorithm. For gradient flows associated to Morse-Bott functions, the singularities form critical manifolds. We use the Conley index theory for the critical manifolds in order to characterize the set of connection matrices for Morse-Bott flows. Results are obtained on the effects on the set of connection matrices caused by a change in the partial ordering and Morse decomposition of isolated invariant sets Doutorado Matemática Doutora em Matemática
- Published
- 2021
3. Matriz de transição direcional
- Author
-
Sousa Junior, Cícero Rumão Gonçalves de, Vieira, Ewerton Rocha, Lima, Dahisy Valadão de Souza, and Euzébio, Rodrigo Donizete
- Subjects
Theory of dynamical systems ,Connection matrix ,Directional transition matrix ,Teoria dos sistemas dinâmicos ,Matriz de transição direcional ,Índice de Conley ,Matriz de conexão ,Morse theory ,MATEMATICA [CIENCIAS EXATAS E DA TERRA] ,Teoria de Morse ,Conley index - Abstract
O estudo de bifurcações globais em sistemas dinâmicos pode ser bastante complicado, então algumas ferramentas topológicas são bastante eficazes na detecção dessas bifurcações, entre elas uma ferramenta muito proeminente é a teoria do índice de Conley aplicado as matrizes de transição. Exploramos assim as principais propriedades e os principais objetos matemáticos necessários para o estudo dessas matrizes, com o objetivo de encontrar uma nova maneira de obter a matriz de transição direcional sem a dependência de uma dinâmica lenta. Por fim apresentamos um novo algoritmo que reduz a quantidade de cálculos necessários para obter a matriz de transição direcional. The study of global bifurcations in dynamical systems can be quite complicated, so some topological tools are very effective at detecting these bifurcations, between them a very prominent tool is the Conley index theory applied to transition matrices. Thus, we explore the main properties and the main mathematical objects necessary for the study of these matrices, with the objective find a new way of obtaining the directional transition matrix without dependence on slow dynamics. Finally, we present a new algorithm that reduces the amount of computation needed to obtain the directional transition matrix. Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq
- Published
- 2020
4. A natural order in dynamical systems based on Conley–Markov matrices
- Author
-
Chow, Shui-Nee, Li, Weiping, Liu, Zhenxin, and Zhou, Hao-Min
- Subjects
- *
MARKOV processes , *MATRICES (Mathematics) , *INVARIANT sets , *INDEX theory (Mathematics) , *PROBABILITY theory , *FOKKER-Planck equation - Abstract
Abstract: We introduce a natural order to study properties of dynamical systems, especially their invariant sets. The new concept is based on the classical Conley index theory and transition probabilities among neighborhoods of different invariant sets when the dynamical systems are perturbed by white noises. The transition probabilities can be determined by the Fokker–Planck equation and they form a matrix called a Markov matrix. In the limiting case when the random perturbation is reduced to zero, the Markov matrix recovers the information given by the Conley connection matrix. The Markov matrix also produces a natural order from the least to the most stable invariant sets for general dynamical systems. In particular, it gives the order among the local extreme points if the dynamical system is a gradient-like flow of an energy functional. Consequently, the natural order can be used to determine the global minima for gradient-like systems. Some numerical examples are given to illustrate the Markov matrix and its properties. [Copyright &y& Elsevier]
- Published
- 2012
- Full Text
- View/download PDF
5. Conley's spectral sequence via the sweeping algorithm
- Author
-
de Rezende, K.A., Mello, M.P., and da Silveira, M.R.
- Subjects
- *
SPECTRAL theory , *MATHEMATICAL sequences , *ALGORITHMS , *GEOMETRIC connections , *MATRICES (Mathematics) , *VECTOR spaces , *INTEGER programming - Abstract
Abstract: In this article we consider a spectral sequence associated to a filtered Morse–Conley chain complex , where Δ is a connection matrix. The underlying motivation is to understand connection matrices under continuation. We show how the spectral sequence is completely determined by a family of connection matrices. This family is obtained by a sweeping algorithm for Δ over fields as well as over . This algorithm constructs a sequence of similar matrices , where each matrix is related to the others via a change-of-basis matrix. Each matrix over (resp., over ) determines the vector space (resp., -module) and the differential . We also prove the integrality of the final matrix produced by the sweeping algorithm over which is quite surprising, mainly because the intermediate matrices in the process may not have this property. Several other properties of the change-of-basis matrices as well as the intermediate matrices are obtained. [Copyright &y& Elsevier]
- Published
- 2010
- Full Text
- View/download PDF
6. conley: Computing connection matrices in Maple
- Author
-
Barakat, Mohamed and Robertz, Daniel
- Subjects
- *
HOMOLOGICAL algebra , *MATHEMATICS , *MATRICES (Mathematics) , *ALGEBRA - Abstract
Abstract: In this work we announce the package to compute connection and -connection matrices. is based on our abstract homological algebra package . We emphasize that the notion of braids is irrelevant for the definition and for the computation of such matrices. We introduce the notion of triangles that suffices to state the definition of (-) connection matrices. The notion of octahedra, which is equivalent to that of braids is also introduced. [Copyright &y& Elsevier]
- Published
- 2009
- Full Text
- View/download PDF
7. STRUCTURE OF THE ATTRACTOR OF THE CAHN–HILLIARD EQUATION ON A SQUARE.
- Author
-
MAIER-PAAPE, STANISLAUS, MISCHAIKOW, KONSTANTIN, and WANNER, THOMAS
- Subjects
- *
ATTRACTORS (Mathematics) , *DIFFERENTIABLE dynamical systems , *EQUILIBRIUM , *MATRICES (Mathematics) , *ALGEBRA , *SYMMETRY - Abstract
We describe the fine structure of the global attractor of the Cahn–Hilliard equation on two-dimensional square domains. This is accomplished by combining recent numerical results on the set of equilibrium solutions due to [Maier-Paape & Miller, 2002] with algebraic Conley index techniques. Using the information on the set of equilibria as assumption, we build Morse decompositions and connection matrices. The latter imply existence of heteroclinic connections between the equilibria inside the attractor. While path-following of the parameter range of Cahn–Hilliard, we find more and more complicated dynamical behavior. One of our main results describes the fine structure of the attractor for mean mass zero with four stable cosine structured equilibria and eight other stable equilibria that have a quarter circle nodal line. Besides that, we also study the attractor in symmetry fixed point spaces where we, for example, find nonunique connection matrices and saddle–saddle connections of Morse sets. [ABSTRACT FROM AUTHOR]
- Published
- 2007
- Full Text
- View/download PDF
8. Teoria da matriz de transição
- Author
-
Vieira, Ewerton Rocha, 1987, Rezende, Ketty Abaroa de, 1959, Carbinatto, Maria do Carmo, Manzoli Neto, Oziride, Silveira, Mariana Rodrigues da, Gameiro, Marcio Fuzeto, Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Matemática, and UNIVERSIDADE ESTADUAL DE CAMPINAS
- Subjects
Sequências espectrais (Matemática) ,Spectral sequences (Mathematics) ,Connection matrix ,Dynamical systems ,Índice de Conley ,Matriz de conexão ,Morse theory ,Sistemas dinâmicos ,Teoria de Morse ,Conley index - Abstract
Orientador: Ketty Abaroa de Rezende Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica Resumo: Nessa tese, apresentamos uma unificação da teoria das matrizes de transição algébrica, singular, topológica e direcional ao introduzir a matriz de transição (generalizada), a qual engloba todas as quatros citadas anteriormente. Alguns resultados de existência são apresentados bem como a verificação de que cada matriz de transição supracitada são casos particulares da matriz de transição (generalizada). Além disso, nós abordamos como as aplicações das quatros matrizes de transiçao, na teoria do índice de Conley, se traduzem para a matriz de transição (generalizada). Quando a matriz de transição (generalizada) satisfizer o requerimento adicional de cobrir o isomorfismo do índice de Conley F definido pelo fluxo, pode-se provar propriedades de existência e de conexão de órbitas. Essa matriz de transição com a propriedade de cobrir o isomorfismo F é definida como matriz de transição topológica generalizada e a utilizamos para obter conexões de órbitas num fluxo Morse-Smale sem órbitas periódicas bem como para obter conexões de órbitas numa continuação associada à sequência espectral dinâmica Abstract: In this thesis, we present a unification of the theory of algebraic, singular, topological and directional transition matrices by introducing the (generalized) transition matrix which encompasses each of the previous four. Some transition matrix existence results are presented as well as the verification that each of the previous transition matrices are cases of the (generalized) transition matrix. Furthermore, we address how applications of the previous transition matrices to the Conley Index theory carry over to the (generalized) transition matrix. When this more general transition matrix satisfies the additional requirement that it covers flow-defined Conley-index isomorphisms, one proves algebraic and connection-existence properties. These general transition matrices with this covering property are referred to as generalized topological transition matrices and are used to consider connecting orbits of Morse-Smale flows without periodic orbits, as well as those in a continuation associated to a dynamical spectral sequence Doutorado Matemática Doutor em Matemática FAPESP
- Published
- 2015
9. On the existence of intermediate magnetohydrodynamic shock waves
- Author
-
Mischaikow, Konstantin and Hattori, Harumi
- Published
- 1990
- Full Text
- View/download PDF
10. A natural order in dynamical systems based on Conley–Markov matrices
- Author
-
Zhenxin Liu, Shui-Nee Chow, Weiping Li, and Haomin Zhou
- Subjects
Global minimum ,Markov kernel ,Markov chain ,Dynamical systems theory ,Applied Mathematics ,Connection matrix ,Mathematical analysis ,Stochastic matrix ,Linear dynamical system ,Transition matrix ,Continuous-time Markov chain ,Matrix (mathematics) ,Fokker–Planck equation ,Applied mathematics ,Conley index theory ,Analysis ,Mathematics ,Conley index - Abstract
We introduce a natural order to study properties of dynamical systems, especially their invariant sets. The new concept is based on the classical Conley index theory and transition probabilities among neighborhoods of different invariant sets when the dynamical systems are perturbed by white noises. The transition probabilities can be determined by the Fokker–Planck equation and they form a matrix called a Markov matrix. In the limiting case when the random perturbation is reduced to zero, the Markov matrix recovers the information given by the Conley connection matrix. The Markov matrix also produces a natural order from the least to the most stable invariant sets for general dynamical systems. In particular, it gives the order among the local extreme points if the dynamical system is a gradient-like flow of an energy functional. Consequently, the natural order can be used to determine the global minima for gradient-like systems. Some numerical examples are given to illustrate the Markov matrix and its properties.
- Full Text
- View/download PDF
11. Algebraic Transition Matrices in the Conley Index Theory
- Author
-
Franzosa, Robert and Mischaikow, Konstantin
- Published
- 1998
12. The Continuation Theory for Morse Decompositions and Connection Matrices
- Author
-
Franzosa, Robert D.
- Published
- 1988
- Full Text
- View/download PDF
13. The Connection Matrix Theory for Morse Decompositions
- Author
-
Franzosa, Robert D.
- Published
- 1989
- Full Text
- View/download PDF
14. The Connection Matrix in Morse-Smale Flows II
- Author
-
Reineck, James F.
- Published
- 1995
- Full Text
- View/download PDF
15. The Connection Matrix in Morse-Smale Flows
- Author
-
Reineck, James F.
- Published
- 1990
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.