1. Dynamical Coulomb blockade under a temperature bias
- Author
-
Abdelhanin Aassime, François Parmentier, Ulf Gennser, H. Duprez, A. Anthore, Christophe Mora, Inès Safi, Abdelkarim Ouerghi, E. Sivre, F. Pierre, Antonella Cavanna, Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et de Nanotechnologies [Orsay] (C2N), Université Paris-Sud - Paris 11 (UP11)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), C2N, CNRS - Université Paris-Sud, Université Paris-Saclay, Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), ANR-16-CE30-0010,QuTherm,Transport quantique de la chaleur dans les circuits mésoscopiques(2016), and ANR-18-CE47-0014,SIM-CIRCUIT,Simulation quantique de physique à N-corps avec des circuits hybrides(2018)
- Subjects
Coulomb blockade ,FOS: Physical sciences ,Mesoscopics ,01 natural sciences ,010305 fluids & plasmas ,Condensed Matter - Strongly Correlated Electrons ,Electrical resistivity and conductivity ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0103 physical sciences ,Electrical conductivity ,010306 general physics ,Quantum ,ComputingMilieux_MISCELLANEOUS ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,Physics ,Quantum Physics ,Strongly Correlated Electrons (cond-mat.str-el) ,Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed matter physics ,500 Naturwissenschaften und Mathematik::530 Physik::530 Physik ,Conductance ,Conductor ,Dissipative system ,Quantum Physics (quant-ph) - Abstract
We observe and comprehend the dynamical Coulomb blockade suppression of the electrical conductance across an electronic quantum channel submitted to a temperature difference. A broadly tunable, spin-polarized Ga(Al)As quantum channel is connected on-chip, through a micron-scale metallic node, to a linear $RC$ circuit. The latter is made up of the node's geometrical capacitance $C$ in parallel with an adjustable resistance $R\in \{1/2,1/3,1/4\}\times h/e^2$ formed by 2--4 quantum Hall channels. The system is characterized by three temperatures: a temperature of the electrons in the large electrodes ($T$) and in the node ($T_\mathrm{node}$), and a temperature of the electromagnetic modes of the $RC$ circuit ($T_\mathrm{env}$). The temperature in the node is selectively increased by local Joule dissipation, and characterized from current fluctuations. For a quantum channel in the tunnel regime, a close match is found between conductance measurements and tunnel dynamical Coulomb blockade theory. In the opposite near ballistic regime, we develop a theory that accounts for different electronic and electromagnetic bath temperatures, again in very good agreement with experimental data. Beyond these regimes, for an arbitrary quantum channel set in the far out-of-equilibrium situation where the temperature in the node significantly exceeds the one in the large electrodes, the equilibrium (uniform temperature) prediction for the conductance is recovered, albeit at a rescaled temperature $\alpha T_\mathrm{node}$., Comment: Submitted
- Published
- 2021