1. Low-energy Spin Dynamics of Quantum Spin Liquid Candidate $NaYbSe_{2}$
- Author
-
Zheng Zhang, Jianshu Li, Mingtai Xie, Weizhen Zhuo, D. T. Adroja, Peter J. Baker, T. G. Perring, Anmin Zhang, Feng Jin, Jianting Ji, Xiaoqun Wang, Jie Ma, and Qingming Zhang
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Condensed Matter - Materials Science ,Strongly Correlated Electrons (cond-mat.str-el) ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Condensed Matter::Strongly Correlated Electrons - Abstract
The family of rare earth chalcogenides $ARECh_{2}$ (A = alkali or monovalent ions, RE = rare earth, and Ch = O, S, Se, and Te) appears as an inspiring playground for studying quantum spin liquids (QSL). The crucial low-energy spin dynamics remain to be uncovered. By employing muon spin relaxation ($\mu$SR) and zero-field (ZF) AC susceptibility down to 50 mK, we are able to identify the gapless QSL in $NaYbSe_{2}$, a representative member with an effective spin-1/2, and explore its unusual spin dynamics. The ZF $\mu$SR experiments unambiguously rule out spin ordering or freezing in $NaYbSe_{2}$ down to 50 mK, two orders of magnitude smaller than the exchange coupling energies. The spin relaxation rate, $\lambda$, approaches a constant below 0.3 K, indicating finite spin excitations featured by a gapless QSL ground state. This is consistently supported by our AC susceptibility measurements. The careful analysis of the longitudinal field (LF) $\mu$SR spectra reveals a strong spatial correlation and a temporal correlation in the spin-disordered ground state, highlighting the unique feature of spin entanglement in the QSL state. The observations allow us to establish an experimental H-T phase diagram. The study offers insight into the rich and exotic magnetism of the rare earth family., Comment: 21 pages, 18 figures
- Published
- 2021
- Full Text
- View/download PDF