1. Creating and controlling Dirac fermions, Weyl fermions, and nodal lines in the magnetic antiperovskite Eu$_3$PbO
- Author
-
Moritz M. Hirschmann, Alexandra S. Gibbs, Fabio Orlandi, Dmitry Khalyavin, Pascal Manuel, Vahideh Abdolazimi, Alexander Yaresko, Jürgen Nuss, H. Takagi, Andreas P. Schnyder, Andreas W. Rost, EPSRC, University of St Andrews. School of Chemistry, University of St Andrews. Centre for Designer Quantum Materials, and University of St Andrews. School of Physics and Astronomy
- Subjects
MCC ,Condensed Matter - Materials Science ,Condensed Matter - Strongly Correlated Electrons ,QC Physics ,Physics and Astronomy (miscellaneous) ,Strongly Correlated Electrons (cond-mat.str-el) ,Condensed Matter - Mesoscale and Nanoscale Physics ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,NDAS ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,General Materials Science ,QC - Abstract
Funding: A. W. R. and A. S. G. were supported by the Engineering and Physical Sciences Research Council (grant numbers EP/P024564/1 and EP/T011130/1 respectively). This work has been supported in part by the Alexander von Humboldt Foundation. The band topology of magnetic semimetals is of interest both from the fundamental science point of view and with respect to potential spintronics and memory applications. Unfortunately, only a handful of suitable topological semimetals with magnetic order have been discovered so far. One such family that hosts these characteristics is the antiperovskites, A3BO, a family of 3D Dirac semimetals. The A=Eu2+ compounds magnetically order with multiple phases as a function of applied magnetic field. Here, by combining band structure calculations with neutron diffraction and magnetic measurements, we establish the antiperovskite Eu3PbO as a new topological magnetic semimetal. This topological material exhibits a multitude of different topological phases with ordered Eu moments which can be easily controlled by an external magnetic field. The topological phase diagram of Eu3PbO includes an antiferromagnetic Dirac phase, as well as ferro- and ferrimagnetic phases with both Weyl points and nodal lines. For each of these phases, we determine the bulk band dispersions, the surface states, and the topological invariants by means of ab initio and tight-binding calculations. Our discovery of these topological phases introduces Eu3PbO as a new platform to study and manipulate the interplay of band topology, magnetism, and transport. Publisher PDF
- Published
- 2022