1. Local-Ising type magnetic order and metamagnetism in the rare-earth pyrogermanate Er$_2$Ge$_2$O$_7$
- Author
-
Taddei, K. M., Sanjeewa, L., Kolis, J. W., Sefat, A. S., de la Cruz, C., and Pajerowski, D. M.
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Strongly Correlated Electrons (cond-mat.str-el) ,FOS: Physical sciences ,Condensed Matter::Strongly Correlated Electrons - Abstract
The recent discoveries of proximate quantum spin-liquid compounds and their potential application in quantum computing informs the search for new candidate materials for quantum spin-ice and spin-liquid physics. While the majority of such work has centered on members of the pyrochlore family due to their inherently frustrated linked tetrahedral structure, the rare-earth pyrogermanates also show promise for possible frustrated magnetic behavior. With the familiar stoichiometry $RE_2$Ge$_2$O$_7$, these compounds generally have tetragonal symmetry with a rare-earth sublattice built of a spiral of alternating edge and corner sharing rare-earth site triangles. Studies on Dy$_2$Ge$_2$O$_7$ and Ho$_2$Ge$_2$O$_7$ have shown tunable low temperature antiferromagnetic order, a high frustration index and spin-ice like dynamics. Here we use neutron diffraction to study magnetic order in Er$_2$Ge$_2$O$_7$ (space group $P4_{1}2_{1}2$ ) and find the lowest yet Ne\'el temperature in the pyrogermanates of 1.15 K. Using neutron powder diffraction we find the magnetic structure to order with $k = (0,0,0)$ ordering vector, magnetic space group symmetry $P4_{1}^{'}2_{1}2^{'}$ and a refined Er moment of $m = 8.1 \mu_B$ - near the expected value for the Er$^{3+}$ free ion. Provocatively, the magnetic structure exhibits similar 'local-Ising' behavior to that seen in the pyrocholres where the Er moment points up or down along the short Er-Er bond. Upon applying a magnetic field we find a first order metamagnetic transition at $\sim$ 0.35 T to a lower symmetry $P2_{1}^{'}2_{1}^{'}2$ structure. This magnetic transition involves an inversion of Er moments aligned antiparallel to the applied field describing a class I spin-flip type transition, indicating a strong local anisotropy at the Er site - reminiscent of that seen in the spin-ice pyrochlores., Comment: 11 pages, 8 figs
- Published
- 2018