1. Meeting Locations in Real-Time Ridesharing Problem: A Buckets Approach
- Author
-
Ammar Oulamara, Kamel Aissat, OPTImisation Methods for Integrated SysTems (OPTIMIST), Department of Networks, Systems and Services (LORIA - NSS), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), and Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Subjects
Set (abstract data type) ,Flexibility (engineering) ,Matching (statistics) ,Traffic congestion ,Operations research ,Computer science ,Heuristic (computer science) ,11. Sustainability ,Shortest path problem ,Cost sharing ,[INFO.INFO-RO]Computer Science [cs]/Operations Research [cs.RO] ,Operating cost ,ComputingMilieux_MISCELLANEOUS - Abstract
Improving transportation efficiency without increasing urban traffic congestion, requires to carry out new services such as ridesharing which contributes to reduce operating cost and to save road resources. In this paper, we provide users of a ridesharing system greater flexibility: given a set of drivers’ offers already in the system, and a new rider’s request, we determine a best driver, a best pick-up and drop-off locations, and a sharing cost rate between rider and driver for their common path. The main idea of our approaches consists in labelling interesting nodes of a geographical map with information about drivers, in so-called buckets. Based on the information contained in these buckets, when a rider enters the system we determine a best driver, as well as a best pick-up and drop-off locations that minimize the total travel cost of rider and driver. Exact and heuristic approaches to identify a best driver, as well as a best pick-up and drop-off locations are proposed. Finally, we perform a comparative evaluation using real road network of the Lorraine region (FR) and real data provided by a local company. Experimental analysis shows a running time of a few seconds while improving participants’ cost-savings and matching rate compared to the recurring ridesharing.
- Published
- 2015
- Full Text
- View/download PDF