1. A new variational method for erythrocyte velocity estimation in wide-field imaging in-vivo
- Author
-
Sylvain Takerkart, Ivo Vanzetta, Guillaume S. Masson, Olivier Faugeras, Thomas Deneux, Weizmann Institute of Science [Rehovot, Israël], Institut de neurosciences cognitives de la méditerranée - UMR 6193 (INCM), Université de la Méditerranée - Aix-Marseille 2-Centre National de la Recherche Scientifique (CNRS), NEUROMATHCOMP, Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-INRIA Rocquencourt, Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), Weizmann Institute for Science [Rehovot], Institut de neurosciences cognitives de la méditerranée - UMR 6193 ( INCM ), Université de la Méditerranée - Aix-Marseille 2-Centre National de la Recherche Scientifique ( CNRS ), Inria Sophia Antipolis - Méditerranée ( CRISAM ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -INRIA Rocquencourt, Institut National de Recherche en Informatique et en Automatique ( Inria ) -École normale supérieure - Paris ( ENS Paris ) -Université Nice Sophia Antipolis ( UNS ), Université Côte d'Azur ( UCA ) -Université Côte d'Azur ( UCA ) -Centre National de la Recherche Scientifique ( CNRS ), Equipe Autre (hors R&D), Sciences et Technologies de la Musique et du Son (STMS), Institut de Recherche et Coordination Acoustique/Musique (IRCAM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche et Coordination Acoustique/Musique (IRCAM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Institut de Neurosciences de la Timone (INT), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), InVibe, and Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Male ,Erythrocytes ,Computer science ,Tracking (particle physics) ,[SCCO]Cognitive science ,[SPI]Engineering Sciences [physics] ,0302 clinical medicine ,Microscopy ,Image Processing, Computer-Assisted ,Computer vision ,ComputingMilieux_MISCELLANEOUS ,Cerebral Cortex ,0303 health sciences ,Radiological and Ultrasound Technology ,Fluorescence ,Computer Science Applications ,medicine.anatomical_structure ,Cerebral blood flow ,Trajectory ,Benchmark (computing) ,Biological system ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,Algorithms ,Blood Flow Velocity ,[ MATH.MATH-GM ] Mathematics [math]/General Mathematics [math.GM] ,Optical flow ,[SCCO.COMP]Cognitive science/Computer science ,Image processing ,03 medical and health sciences ,Optical imaging ,[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM] ,medicine ,Animals ,Rats, Wistar ,Electrical and Electronic Engineering ,030304 developmental biology ,Radon transform ,Pixel ,business.industry ,[SCCO.NEUR]Cognitive science/Neuroscience ,Blood flow ,Rats ,Functional imaging ,Red blood cell ,Microscopy, Fluorescence, Multiphoton ,Microvessels ,Artificial intelligence ,business ,030217 neurology & neurosurgery ,Software - Abstract
International audience; Measuring erythrocyte velocity in individual microvessels has important applications for biomedical and functional imaging. Recent multiphoton fluorescence microscopy approaches require injecting fluorescent tracers; moreover, only one or few vessels can be imaged at a time. To overcome these shortcomings, we used CCD-based optical imaging of intrinsic absorption changes in macroscopic vascular networks to record erythrocytes' trajectories over several mm2 of cortical surface. We then demonstrate the feasibility of erythrocyte velocity estimation from such wide-field data, using two robust, independent, algorithms. The first one is a recently published Radon transform-based algorithm that estimates erythrocyte velocity locally. We adapt it to data obtained in wide-field imaging and show, for the first time, its performance on such datasets. The second ("fasttrack") algorithm is novel. It is based on global energy minimization techniques to estimate the full spatiotemporal erythrocytes' trajectories inside vessels. We test the two algorithms on both simulated and biological data, obtained in rat cerebral cortex in a spreading depression experiment. On vessels with medium-slow erythrocyte velocities both algorithms performed well, allowing their usage as benchmark one for another. However, our novel fasttrack algorithm outperformed the other one for higher velocities, as encountered in the arterial network.
- Published
- 2011