1. Genome Editing of Expanded CTG Repeats within the Human DMPK Gene Reduces Nuclear RNA Foci in the Muscle of DM1 Mice
- Author
-
Karine Poulard, Geneviève Gourdon, Mirella Lo Scrudato, Aline Huguet, Arnaud F. Klein, Denis Furling, Célia Sourd, Ana Buj-Bello, Guillaume Corre, Stéphanie Tomé, Approches génétiques intégrées et nouvelles thérapies pour les maladies rares (INTEGRARE), Université d'Évry-Val-d'Essonne (UEVE)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Saclay-Généthon, Imagine - Institut des maladies génétiques (IMAGINE - U1163), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de recherche en Myologie – U974 SU-INSERM, Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), This work was supported by the Association Française contre les Myopathies (AFM-Telethon), and M.L.S. was partially supported by the grant ANR-16-CE18-0012., ANR-16-CE18-0012,STaHR,Stimulation de la Recombinaison Homologue pour la Thérapie Génique(2016), École pratique des hautes études (EPHE)-Université d'Évry-Val-d'Essonne (UEVE)-GENETHON 3-Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie (Paris 6), Génétique et épigénétique des maladies métaboliques, neurosensorielles et du développement (Inserm U781), Institut de Myologie, Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Association française contre les myopathies (AFM-Téléthon)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Généthon, Evry, Imagine - Institut des maladies génétiques (IHU) (Imagine - U1163), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Paris (UP), Centre National de la Recherche Scientifique (CNRS)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), Poulard, Karine, Stimulation de la Recombinaison Homologue pour la Thérapie Génique - - STaHR2016 - ANR-16-CE18-0012 - AAPG2016 - VALID, Université d'Évry-Val-d'Essonne (UEVE)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Généthon-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Centre National de la Recherche Scientifique (CNRS)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Association française contre les myopathies (AFM-Téléthon)-Sorbonne Université (SU), and Centre de Recherche en Myologie
- Subjects
Untranslated region ,[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,Fluorescent Antibody Technique ,Gene Expression ,[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,Mice ,0302 clinical medicine ,Transduction, Genetic ,Drug Discovery ,ComputingMilieux_MISCELLANEOUS ,Ribonucleoprotein ,Gene Editing ,Mice, Knockout ,nucleotide repeat disorders ,0303 health sciences ,[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] ,gene therapy ,Cell biology ,030220 oncology & carcinogenesis ,RNA splicing ,Gene Targeting ,Molecular Medicine ,[SDV.IMM]Life Sciences [q-bio]/Immunology ,Original Article ,CRISPR-Cas9 ,RNA, Guide, Kinetoplastida ,DMPK ,musculoskeletal diseases ,congenital, hereditary, and neonatal diseases and abnormalities ,Genetic Vectors ,Locus (genetics) ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Biology ,Myotonic dystrophy ,Myotonin-Protein Kinase ,03 medical and health sciences ,Genetics ,medicine ,Animals ,Humans ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Muscle, Skeletal ,Molecular Biology ,Gene ,030304 developmental biology ,RNA, Nuclear ,Pharmacology ,Cell Nucleus ,[SDV.GEN]Life Sciences [q-bio]/Genetics ,myotonic dystrophy ,Base Sequence ,Alternative splicing ,RNA ,[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,medicine.disease ,[SDV.BIO] Life Sciences [q-bio]/Biotechnology ,Alternative Splicing ,Disease Models, Animal ,CRISPR-Cas Systems ,Trinucleotide Repeat Expansion - Abstract
Myotonic dystrophy type 1 (DM1) is caused by a CTG repeat expansion located in the 3′ UTR of the DMPK gene. Expanded DMPK transcripts aggregate into nuclear foci and alter the function of RNA-binding proteins, leading to defects in the alternative splicing of numerous pre-mRNAs. To date, there is no curative treatment for DM1. Here we investigated a gene-editing strategy using the CRISPR-Cas9 system from Staphylococcus aureus (Sa) to delete the CTG repeats in the human DMPK locus. Co-expression of SaCas9 and selected pairs of single-guide RNAs (sgRNAs) in cultured DM1 patient-derived muscle line cells carrying 2,600 CTG repeats resulted in targeted DNA deletion, ribonucleoprotein foci disappearance, and correction of splicing abnormalities in various transcripts. Furthermore, a single intramuscular injection of recombinant AAV vectors expressing CRISPR-SaCas9 components in the tibialis anterior muscle of DMSXL (myotonic dystrophy mouse line carrying the human DMPK gene with >1,000 CTG repeats) mice decreased the number of pathological RNA foci in myonuclei. These results establish the proof of concept that genome editing of a large trinucleotide expansion is feasible in muscle and may represent a useful strategy to be further developed for the treatment of myotonic dystrophy., Lo Scrudato and colleagues have used the CRISPR-Cas9 system to excise large CTG repeat expansions in the DMPK gene causing myotonic dystrophy type 1 (DM1), and they demonstrate that genome editing in patient-derived muscle cells and skeletal muscle of a mouse model reduces pathological signs of the disease.
- Published
- 2019