1. Learning elementary structures for 3D shape generation and matching
- Author
-
Deprelle, Theo, Groueix, Thibault, Fisher, Matthew, Kim, Vladimir G., Russell, Bryan C., Aubry, Mathieu, Laboratoire d'Informatique Gaspard-Monge (LIGM), École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel, imagine [Marne-la-Vallée], Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Bézout-ESIEE Paris-École des Ponts ParisTech (ENPC)-Université Paris-Est Marne-la-Vallée (UPEM)-Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Bézout-ESIEE Paris-École des Ponts ParisTech (ENPC)-Université Paris-Est Marne-la-Vallée (UPEM), Adobe Research, Université Paris-Est Marne-la-Vallée (UPEM)-École des Ponts ParisTech (ENPC)-ESIEE Paris-Fédération de Recherche Bézout-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Marne-la-Vallée (UPEM)-École des Ponts ParisTech (ENPC)-ESIEE Paris-Fédération de Recherche Bézout-Centre National de la Recherche Scientifique (CNRS), and Groueix, Thibault
- Subjects
FOS: Computer and information sciences ,[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,Artificial Intelligence (cs.AI) ,Computer Science - Artificial Intelligence ,Computer Vision and Pattern Recognition (cs.CV) ,Computer Science - Computer Vision and Pattern Recognition ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,ComputingMethodologies_COMPUTERGRAPHICS - Abstract
We propose to represent shapes as the deformation and combination of learnable elementary 3D structures, which are primitives resulting from training over a collection of shape. We demonstrate that the learned elementary 3D structures lead to clear improvements in 3D shape generation and matching. More precisely, we present two complementary approaches for learning elementary structures: (i) patch deformation learning and (ii) point translation learning. Both approaches can be extended to abstract structures of higher dimensions for improved results. We evaluate our method on two tasks: reconstructing ShapeNet objects and estimating dense correspondences between human scans (FAUST inter challenge). We show 16% improvement over surface deformation approaches for shape reconstruction and outperform FAUST inter challenge state of the art by 6%.
- Published
- 2021