1. Diagnosis of diabetes using machine learning algorithms
- Author
-
Abbas M. Al-Bakry and Fayroza Alaa Khaleel
- Subjects
business.industry ,Blood sugar ,General Medicine ,Machine learning ,computer.software_genre ,medicine.disease ,Logistic regression ,Naive Bayes classifier ,Diabetes mellitus ,Early prediction ,Medicine ,Artificial intelligence ,Risk factor ,business ,Pima indian diabetes ,computer ,Algorithm - Abstract
One of the chronic diseases is Diabetes, Diabetes is a metabolic disorder category caused by continued high levels of blood sugar. It is regarded as one of the most deadly diseases in the world. If accurate early prediction is possible, Diabetes severity and risk factor can be significantly lowered. Machine learning has become more popular in the medical community as a result of its ascent, and in the field of diseases in particular. In this paper, we propose a model that can predict where the patient has or hasn't have diabetes. Our model is based on the prediction precision of certain powerful machine learning (ML) algorithms based on different measures such as precision, recall, and F1-measure. The Pima Indian Diabetes (PIDD) dataset has been used, that can predict diabetic onset based on diagnostics manner. The results we obtained using Logistic Regression (LR), Naive Bayes (NB), and K-nearest Neighbor (KNN) algorithms were 94%, 79%, and 69% respectively. The results show that LR is more efficient at predicting diabetes Compared to other algorithms.
- Published
- 2023
- Full Text
- View/download PDF