1. The anonymization problem in social networks
- Author
-
de Jong, Rachel G., van der Loo, Mark P. J., and Takes, Frank W.
- Subjects
Computer Science - Social and Information Networks - Abstract
In this paper we introduce a general version of the anonymization problem in social networks, in which the goal is to maximize the number of anonymous nodes by altering a given graph. We define three variants of this optimization problem, being full, partial and budgeted anonymization. In each, the objective is to maximize the number of k-anonymous nodes, i.e., nodes for which there are at least k-1 equivalent nodes, according to a particular anonymity measure of structural node equivalence. We propose six new heuristic algorithms for solving the anonymization problem which we implement into the reusable ANO-NET computational framework. As a baseline, we use an edge sampling method introduced in previous work. Experiments on both graph models and 17 real-world network datasets result in three empirical findings. First, we demonstrate that edge deletion is the most effective graph alteration operation. Second, we compare four commonly used anonymity measures from the literature and highlight how the choice of anonymity measure has a tremendous effect on both the achieved anonymity as well as the difficulty of solving the anonymization problem. Third, we find that the proposed algorithms that preferentially delete edges with a larger effect on nodes at a structurally unique position consistently outperform heuristics solely based on network structure. With similar runtimes, our algorithms retain on average 17 times more edges, ensuring higher data utility after full anonymization. In the budgeted variant, they achieve 4.4 times more anonymous nodes than the baseline. This work lays important foundations for future development of algorithms for anonymizing social networks.
- Published
- 2024