1. LFNet: Local Rotation Invariant Coordinate Frame for Robust Point Cloud Analysis
- Author
-
Ronghui Zhan, Jun Zhang, Yanxin Ma, Hezhi Cao, and Chao Ma
- Subjects
Computer science ,Applied Mathematics ,Frame (networking) ,Feature extraction ,Point cloud ,020206 networking & telecommunications ,02 engineering and technology ,Convolution ,Kernel (image processing) ,Signal Processing ,0202 electrical engineering, electronic engineering, information engineering ,Point (geometry) ,Electrical and Electronic Engineering ,Invariant (mathematics) ,Algorithm ,Rotation (mathematics) - Abstract
Deep neural networks have achieved great progress in 3D scene understanding. However, recent methods mainly focused on objects with canonical orientations in contrast with random postures in reality. In this letter, we propose a hierarchical neural network, named Local Frame Network (LFNet), based on the local rotation invariant coordinate frame for robust point cloud analysis. The local point patches in different orientated objects are transformed into an identical distribution based on this coordinate frame, and the transformed coordinates are taken as input features to eliminate the influence of rotations at the input level . Meanwhile, a discrete convolution operator is defined in the constructed coordinate frame to extract rotation invariant features from local patches, which can further remove the influence of rotations at the convolution level . Moreover, a Spatial Feature Encoder (SFE) module is utilized to perceive the spatial structure of the local region. Mathematical analysis and experimental results on two public datasets demonstrate that the proposed method can eliminate the influence of rotations without data augmentation and outperforms other state-of-the-art methods.
- Published
- 2021