1. LEA 3: Factor models in population genetics and ecological genomics with R
- Author
-
Cléement Gain, Olivier François, Université Grenoble Alpes (UGA), Translational Innovation in Medicine and Complexity / Recherche Translationnelle et Innovation en Médecine et Complexité - UMR 5525 (TIMC ), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Biologie Computationnelle et Modélisation (TIMC-BCM ), Université Grenoble Alpes (UGA)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes INP (Grenoble INP), and ANR-19-P3IA-0003,MIAI,MIAI @ Grenoble Alpes(2019)
- Subjects
Mixed model ,0106 biological sciences ,0301 basic medicine ,Multivariate statistics ,Genotype ,Computer science ,Population ,Population genetics ,Correlation and dependence ,Genomics ,Context (language use) ,Biology ,010603 evolutionary biology ,01 natural sciences ,Environmental data ,03 medical and health sciences ,Genetics ,Imputation (statistics) ,education ,ComputingMilieux_MISCELLANEOUS ,Ecology, Evolution, Behavior and Systematics ,030304 developmental biology ,Genetic association ,Factor analysis ,0303 health sciences ,education.field_of_study ,[SDV.GEN.GPO]Life Sciences [q-bio]/Genetics/Populations and Evolution [q-bio.PE] ,Models, Genetic ,Ecology ,Adaptation, Physiological ,Data set ,030104 developmental biology ,Genetics, Population ,Imputation (genetics) ,Algorithms ,Biotechnology - Abstract
A major objective of evolutionary biology is to understand the processes by which organisms have adapted to various environments, and to predict the response of organisms to new or future conditions. The availability of large genomic and environmental data sets provides an opportunity to address those questions, and the R package LEA has been introduced to facilitate population and ecological genomic analyses in this context. By using latent factor models, the program computes ancestry coefficients from population genetic data, and performs genotype-environment association analyses with correction for unobserved confounding variables. In this study, we present new functionalities of LEA, which include imputation of missing genotypes, fast algorithms for latent factor mixed models using multivariate predictors for genotype-environment association studies, population differentiation tests for admixed or continuous populations, and estimation of genetic offset based on climate models. The new functionalities are implemented in version 3.0 and higher releases of the package. Using simulated and real data sets, our study provides evaluations and examples of applications, outlining important practical considerations when analyzing ecological genomic data in R.
- Published
- 2021