Rémi Gribonval, Quoc-Tung Le, Dynamic Networks : Temporal and Structural Capture Approach (DANTE), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de l'Informatique du Parallélisme (LIP), Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Institut Rhône-Alpin des systèmes complexes (IXXI), Université Grenoble Alpes (UGA)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Université Grenoble Alpes (UGA)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon, École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut Rhône-Alpin des systèmes complexes (IXXI), École normale supérieure de Lyon (ENS de Lyon)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Copyright 2021 IEEE. Published in ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), scheduled for 6-11 June 2021 in Toronto, Ontario, Canada. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.; International audience; Matrix factorization with sparsity constraints plays an important role in many machine learning and signal processing problems such as dictionary learning, data visualization, dimension reduction. Among the most popular tools for sparse matrix factorization are proximal algorithms, a family of algorithms based on proximal operators. In this paper, we address two problems with the application of proximal algorithms to sparse matrix factorization. On the one hand, we analyze a weakness of proximal algorithms in sparse matrix factorization: the premature convergence of the support. A remedy is also proposed to address this problem. On the other hand, we describe a new tractable proximal operator called Generalized Hungarian Method, associated to so-called k-regular matrices, which are useful for the factorization of a class of matrices associated to fast linear transforms. We further illustrate the effectiveness of our proposals by numerical experiments on the Hadamard Transform and magnetoencephalography matrix factorization.