George Giakkoupis, Petra Berenbrink, Peter Kling, Universität Hamburg (UHH), the World Is Distributed Exploring the tension between scale and coordination (WIDE), Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-SYSTÈMES LARGE ÉCHELLE (IRISA-D1), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Bretagne Sud (UBS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-CentraleSupélec-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Bretagne Sud (UBS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), and ANR-16-CE23-0016,PAMELA,Apprentissage automatique décentralisé et personnalisé sous contraintes(2016)
Full verions, including all proofs; International audience; Population protocols are a model of distributed computing, where $n$ agents with limited computational power and memory perform randomly scheduled pairwise interactions.A fundamental problem in this setting is that of leader election, where all agents start from the same state, and they seek to reach and maintain a global state where exactly one agent is in a dedicated leader state.A significant amount of work has been devoted to the study of the time and space complexity of this problem.Alistarh et al.~(SODA'17) have shown that $\Omega(\log\log n)$ states per agent are needed in order to elect a leader in fewer than $\tilde\Theta(n^2)$ expected interactions.Moreover, $\Omega(n\log n)$ expected interactions are required regardless of the number of states (Sudo and Masuzawa; 2020).On the upper bound side, Gasieniec and Stachowiak (SODA'18) have presented the first protocol that uses an optimal, $\Theta(\log\log n)$, number or states and elects a leader in $O(n \log^2 n)$ expected interactions.This running time was subsequently improved to $O(n \log n\log\log n)$ (Gasieniec et al.; SPAA'19).In this paper we provide the first leader election population protocol that is both time and space optimal:it uses $\Theta(\log\log n)$ states per agent, and elects a leader in $O(n\log n)$ interactions in expectation.A key novel component of our approach is a simple protocol that efficiently selects a small set of agents of poly$(\log n)$ size, given an initial set of $s = O(n^\epsilon)$ selected agents.Unlike existing approaches, which proceed by shrinking the initial set monotonically over time, our novel component first increases the set in a controlled way to a specific size (which is independent of $s$) before it shrinks the set to a poly$(\log n)$ size.