1. A characterization of weighted simple games based on pseudoweightings
- Author
-
Josep Freixas, Universitat Politècnica de Catalunya. Departament de Matemàtiques, and Universitat Politècnica de Catalunya. GRTJ - Grup de Recerca en Teoria de Jocs
- Subjects
Optimization ,Computer Science::Computer Science and Game Theory ,Class (set theory) ,Control and Optimization ,Computer science ,Threshold logic ,Optimització matemàtica ,Monotonic function ,Simple games ,Boolean algebra ,Threshold functions ,symbols.namesake ,Algebra, Boolean ,Simple (abstract algebra) ,90 Operations research, mathematical programming::90B Operations research and management science [Classificació AMS] ,91 Game theory, economics, social and behavioral sciences::91B Mathematical economics [Classificació AMS] ,Boolean functions ,Jocs, Teoria de ,Boolean function ,Matemàtiques i estadística::Investigació operativa::Teoria de jocs [Àrees temàtiques de la UPC] ,Game theory ,Mathematical optimization ,ComputingMilieux_PERSONALCOMPUTING ,Pseudoweightings ,91 Game theory, economics, social and behavioral sciences::91A Game theory [Classificació AMS] ,Function (mathematics) ,06 Order, lattices, ordered algebraic structures::06E Boolean algebras (Boolean rings) [Classificació AMS] ,94 Information And Communication, Circuits::94C Circuits, networks [Classificació AMS] ,Algebra ,Weighted games ,symbols ,Mathematical structure ,Àlgebra booleana - Abstract
This is a post-peer-review, pre-copyedit version of an article published in Optimization letters. The final authenticated version is available online at: http://dx.doi.org/10.1007/s11590-020-01647-3 The paper provides a new characterization of weighted games within the class of simple games. It is based on a stronger form of the point-set-additive pseudoweighting property of simple games. The characterization obtained is of interest in various research fields such as game theory, coherent structures, logic gates, operations research and Boolean algebra. A (monotonic) simple game corresponds to an inequivalent (monotonic) function in Boolean algebra and a weighted game corresponds to a threshold function. The characterization obtained provides a better understanding of these mathematical structures while opening new prospects for solving numerous open problems in these areas. This research was partially supported by funds from the Spanish Ministry of Economy and Competitiveness (MINECO) and from the European Union (FEDER funds) under grant MTM2015–66818-P(MINECO/FEDER).
- Published
- 2020
- Full Text
- View/download PDF