1. Generating 3D Facial Expressions with Recurrent Neural Networks
- Author
-
Hyewon Seo, Guoliang Luo, Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), East China Jiaotong University (ECJU), ANR-19-CE23-0020,Human4D,Human4D: Acquisition, Analyse et Synthèse de la Forme du Corps Humain en Mouvement(2019), École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Les Hôpitaux Universitaires de Strasbourg (HUS)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), SEO, Hyewon, and Human4D: Acquisition, Analyse et Synthèse de la Forme du Corps Humain en Mouvement - - Human4D2019 - ANR-19-CE23-0020 - AAPG2019 - VALID
- Subjects
Facial expression ,Artificial neural network ,business.industry ,Computer science ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,020207 software engineering ,Pattern recognition ,02 engineering and technology ,LSTM Neural Networks ,[INFO] Computer Science [cs] ,[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG] ,Rendering (computer graphics) ,Computer graphics ,Recurrent neural network ,[INFO.INFO-CG] Computer Science [cs]/Computational Geometry [cs.CG] ,Robustness (computer science) ,Feature (computer vision) ,0202 electrical engineering, electronic engineering, information engineering ,Facial expression generation ,020201 artificial intelligence & image processing ,[INFO]Computer Science [cs] ,Artificial intelligence ,Representation (mathematics) ,business ,ComputingMethodologies_COMPUTERGRAPHICS - Abstract
International audience; Learning based methods have proved effective at high-quality image synthesis tasks, such as content-preserving image rendering with different style, and the generation of new images depicting learned objects. Some of the properties that make neural networks suitable for such tasks, for example robustness to the input's low-level feature, and the ability to retrieve contextual information, are also desirable in 3D shape domain. During last decades, data-driven methods have shown successful results in 3D shape modeling tasks, such as human face and body shape synthesis. Subtle, abstract properties on the geometry that are instantly detected by our eyes but are nontrivial to synthesize, have successfully been achieved by tuning a shape model built from example shapes. Recent successful learning techniques, e.g. deep neural networks, also exploit this shape model, since the regular grid assumption with 2D images does not have a straightforward equivalent in the common shape representation in 3D, thus do not easily generalize to 3D shapes. Here, we concentrate on the 3D facial expression generation task, an important problem in computer graphics and other application domains, where existing data-driven approaches mostly rely on direct shape capture or shape transfer. At the core of our approach is a recurrent neural network with a landmark-based shape representation. The network is trained to estimate a sequence of pose change, thus generate a specific facial expression, by using a set of motion-captured facial expression sequences. Our technique promises to significantly improve the quality of generated expressions while extending the potential applicability of neural networks to sequence of 3D shapes.
- Published
- 2021
- Full Text
- View/download PDF