1. Classification among Hidden Markov Models
- Author
-
Akshay, S., Bazille, Hugo, Fabre, Eric, Genest, Blaise, Department of Computer Science and Engineering [Bombay], Indian Institute of Technology Bombay (IIT Bombay), École normale supérieure - Rennes (ENS Rennes), SUpervision of large MOdular and distributed systems (SUMO), Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-LANGAGE ET GÉNIE LOGICIEL (IRISA-D4), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes 1 (UR1), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique)
- Subjects
060201 languages & linguistics ,ComputingMethodologies_PATTERNRECOGNITION ,000 Computer science, knowledge, general works ,0602 languages and literature ,Computer Science ,[INFO.INFO-OH]Computer Science [cs]/Other [cs.OH] ,0202 electrical engineering, electronic engineering, information engineering ,020201 artificial intelligence & image processing ,06 humanities and the arts ,02 engineering and technology ,ComputingMilieux_MISCELLANEOUS - Abstract
An important task in AI is one of classifying an observation as belonging to one class among several (e.g. image classification). We revisit this problem in a verification context: given k partially observable systems modeled as Hidden Markov Models (also called labeled Markov chains), and an execution of one of them, can we eventually classify which system performed this execution, just by looking at its observations? Interestingly, this problem generalizes several problems in verification and control, such as fault diagnosis and opacity. Also, classification has strong connections with different notions of distances between stochastic models. In this paper, we study a general and practical notion of classifiers, namely limit-sure classifiers, which allow misclassification, i.e. errors in classification, as long as the probability of misclassification tends to 0 as the length of the observation grows. To study the complexity of several notions of classification, we develop techniques based on a simple but powerful notion of stationary distributions for HMMs. We prove that one cannot classify among HMMs iff there is a finite separating word from their stationary distributions. This provides a direct proof that classifiability can be checked in PTIME, as an alternative to existing proofs using separating events (i.e. sets of infinite separating words) for the total variation distance. Our approach also allows us to introduce and tackle new notions of classifiability which are applicable in a security context.
- Published
- 2019
- Full Text
- View/download PDF