1. NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling
- Author
-
Singh, Gagandeep, Diamantopoulos, Dionysios, Hagleitner, Christoph, Gómez-Luna, Juan, Stuijk, Sander, Mutlu, Onur, Corporaal, Henk, Mentens, Nele, Sousa, Leonel, Trancoso, Pedro, Pericas, Miquel, Sourdis, Ioannis, Electronic Systems, Efficient Stream Processing Lab, Center for Care & Cure Technology Eindhoven, EAISI High Tech Systems, and EAISI Foundational
- Subjects
FOS: Computer and information sciences ,010302 applied physics ,Computer science ,SDG 13 – Klimaatactie ,Weather and climate ,02 engineering and technology ,Energy consumption ,High Bandwidth Memory ,FLOPS ,01 natural sciences ,7. Clean energy ,Stencil ,020202 computer hardware & architecture ,Computational science ,Acceleration ,13. Climate action ,Hardware Architecture (cs.AR) ,0103 physical sciences ,SDG 13 - Climate Action ,0202 electrical engineering, electronic engineering, information engineering ,SDG 7 - Affordable and Clean Energy ,Computer Science - Hardware Architecture ,Field-programmable gate array ,SDG 7 – Betaalbare en schone energie ,Efficient energy use - Abstract
Ongoing climate change calls for fast and accurate weather and climate modeling. However, when solving large-scale weather prediction simulations, state-of-the-art CPU and GPU implementations suffer from limited performance and high energy consumption. These implementations are dominated by complex irregular memory access patterns and low arithmetic intensity that pose fundamental challenges to acceleration. To overcome these challenges, we propose and evaluate the use of near-memory acceleration using a reconfigurable fabric with high-bandwidth memory (HBM). We focus on compound stencils that are fundamental kernels in weather prediction models. By using high-level synthesis techniques, we develop NERO, an FPGA+HBM-based accelerator connected through IBM CAPI2 (Coherent Accelerator Processor Interface) to an IBM POWER9 host system. Our experimental results show that NERO outperforms a 16-core POWER9 system by 4.2x and 8.3x when running two different compound stencil kernels. NERO reduces the energy consumption by 22x and 29x for the same two kernels over the POWER9 system with an energy efficiency of 1.5 GFLOPS/Watt and 17.3 GFLOPS/Watt. We conclude that employing near-memory acceleration solutions for weather prediction modeling is promising as a means to achieve both high performance and high energy efficiency., This paper appears in FPL 2020
- Published
- 2020