1. Understanding event boundaries for egocentric activity recognition from photo-streams
- Author
-
Petia Radeva, Alejandro Cartas, Estefania Talavera, Mariella Dimiccoli, Institut de Robòtica i Informàtica Industrial, Universitat Politècnica de Catalunya. ROBiri - Grup de Robòtica de l'IRI, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Generalitat de Catalunya, European Commission, Consejo Nacional de Ciencia y Tecnología (México), and NVIDIA Corporation
- Subjects
Informàtica::Automàtica i control [Àrees temàtiques de la UPC] ,Computer science ,business.industry ,Event (computing) ,Lifelogging ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Wearable computer ,Lifelog ,Activity recognition ,Egocentric Vision ,Egocentric Action Recognition ,Pattern recognition ,Pattern recognition (psychology) ,Computer vision ,Artificial intelligence ,business ,Pattern recognition::Computer vision [Classificació INSPEC] - Abstract
Trabajo presentado en el ICPR International Workshops and Challenges, celebrado de forma virtual del 10 al 15 de enero de 2021, The recognition of human activities captured by a wearable photo-camera is especially suited for understanding the behavior of a person. However, it has received comparatively little attention with respect to activity recognition from fixed cameras.In this work, we propose to use segmented events from photo-streams as temporal boundaries to improve the performance of activity recognition. Furthermore, we robustly measure its effectiveness when images of the evaluated person have been seen during training, and when the person is completely unknown during testing. Experimental results show that leveraging temporal boundary information on pictures of seen people improves all classification metrics, particularly it improves the classification accuracy up to 85.73%., Lecture Notes in Computer Science 12663, This work was partially funded by projects RTI2018-095232-B-C2, SGR 1742, CERCA, Nestore Horizon2020 SC1-PM-15-2017 (n 769643), Validithi EIT Health Program, and the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (MINECO/ERDF, EU) through the program Ramon y Cajal, the national Spanish project PID2019-110977GA-I00 and the Spanish national network RED2018-102511-T. A. Cartas supported by a doctoral fellowship from the Mexican Council of Science and Technology (CONACYT) (grant-no. 366596). The authors acknowledge the support of NVIDIA Corporation for hardware donation.
- Published
- 2021