Let$${\mathbb {K}}$$Kbe a non-trivially valued non-Archimedean complete field. Let$$\ell _{\infty }({\mathbb {N}}, {\mathbb {K}})$$ℓ∞(N,K)[$$\ell _c({\mathbb {N}}, {\mathbb {K}});$$ℓc(N,K);$$c_0({\mathbb {N}}, {\mathbb {K}})$$c0(N,K)] be the space of all sequences in$${\mathbb {K}}$$Kthat are bounded [relatively compact; convergent to 0] with the topology of pointwise convergence (i.e. with the topology induced from$${\mathbb {K}}^{{\mathbb {N}}}$$KN). LetXbe an infinite ultraregular space and let$$C_p(X,{\mathbb {K}})$$Cp(X,K)be the space of all continuous functions fromXto$${\mathbb {K}}$$Kendowed with the topology of pointwise convergence. It is easy to see that$$C_p(X,{\mathbb {K}})$$Cp(X,K)is metrizable if and only ifXis countable. We show that for anyX[with an infinite compact subset] the space$$C_p(X,{\mathbb {K}})$$Cp(X,K)has an infinite-dimensional [closed] metrizable subspace isomorphic to$$c_0({\mathbb {N}}, {\mathbb {K}})$$c0(N,K). Next we prove that$$C_p(X,{\mathbb {K}})$$Cp(X,K)has a quotient isomorphic to$$c_0({\mathbb {N}}, {\mathbb {K}})$$c0(N,K)if and only if it has a complemented subspace isomorphic to$$c_0({\mathbb {N}}, {\mathbb {K}})$$c0(N,K). It follows that for any extremally disconnected compact spaceXthe space$$C_p(X,{\mathbb {K}})$$Cp(X,K)has no quotient isomorphic to the space$$c_0({\mathbb {N}}, {\mathbb {K}})$$c0(N,K); in particular, for any infinite discrete spaceDthe space$$C_p(\beta D, {\mathbb {K}})$$Cp(βD,K)has no quotient isomorphic$$c_0({\mathbb {N}}, {\mathbb {K}})$$c0(N,K). Finally we investigate the question for whichXthe space$$C_p(X,{\mathbb {K}})$$Cp(X,K)has an infinite-dimensional metrizable quotient. We show that for any infinite discrete spaceDthe space$$C_p(\beta D, {\mathbb {K}})$$Cp(βD,K)has an infinite-dimensional metrizable quotient isomorphic to some subspace$$\ell _c^0({\mathbb {N}}, {\mathbb {K}})$$ℓc0(N,K)of$${\mathbb {K}}^{{\mathbb {N}}}$$KN. If$${\mathbb {K}}$$Kis locally compact then$$\ell _c^0({\mathbb {N}}, {\mathbb {K}})=\ell _{\infty }({\mathbb {N}}, {\mathbb {K}})$$ℓc0(N,K)=ℓ∞(N,K). If$$|n1_{{\mathbb {K}}}|\ne 1$$|n1K|≠1for some$$n\in {\mathbb {N}}$$n∈N, then$$\ell _c^0({\mathbb {N}}, {\mathbb {K}})=\ell _c ({\mathbb {N}}, {\mathbb {K}}).$$ℓc0(N,K)=ℓc(N,K).In particular,$$C_p(\beta D, {\mathbb {Q}}_q)$$Cp(βD,Qq)has a quotient isomorphic to$$\ell _{\infty }({\mathbb {N}}, {\mathbb {Q}}_q)$$ℓ∞(N,Qq)and$$C_p(\beta D, {\mathbb {C}}_q)$$Cp(βD,Cq)has a quotient isomorphic to$$\ell _c({\mathbb {N}}, {\mathbb {C}}_q)$$ℓc(N,Cq)for any prime numberq.